NEW VARIATIONAL SERIES EXPANSIONS FOR LATTICE MODELS

被引:8
作者
KOLESIK, M
SAMAJ, L
机构
来源
JOURNAL DE PHYSIQUE I | 1993年 / 3卷 / 01期
关键词
D O I
10.1051/jp1:1993119
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the symmetric two-state vertex model on the honeycomb lattice we construct a series expansion of the free energy which, at finite order, depends on free gauge parameters. We treat these gauge parameters as variational ones, and derive a canonical series of classical approximations which possesses the property of coherent anomaly. As a test model we use the vertex formulation of the Ising antiferromagnet in a field and, within the coherent-anomaly method, determine with a high accuracy its critical frontier and exponent gamma. Numerical checks on the constancy of critical exponents along the phase boundary are presented, too.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 1974, PHASE TRANSITIONS CR
[2]  
BONNIER B, 1991, J PHYS I, V1, P331, DOI 10.1051/jp1:1991135
[3]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[4]   THEORY OF MONOMER-DIMER SYSTEMS [J].
HEILMANN, OJ ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (03) :190-&
[5]   COHERENT-ANOMALY METHOD IN CRITICAL PHENOMENA .4. STUDY OF THE WAVE-NUMBER-DEPENDENT SUSCEPTIBILITY IN THE 2D ISING-MODEL [J].
HU, X ;
SUZUKI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (03) :791-806
[6]   COHERENT-ANOMALY METHOD IN CRITICAL PHENOMENA .3. MEAN-FIELD TRANSFER-MATRIX METHOD IN THE 2D ISING-MODEL [J].
HU, X ;
KATORI, M ;
SUZUKI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (11) :3865-3880
[7]   DIMER STATISTICS AND PHASE TRANSITIONS [J].
KASTELEYN, PW .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :287-&
[8]   COHERENT ANOMALY METHOD IN CRITICAL PHENOMENA .2. APPLICATIONS TO THE TWO-DIMENSIONAL AND 3-DIMENSIONAL ISING-MODELS [J].
KATORI, M ;
SUZUKI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :3113-3125
[9]   MULTI-EFFECTIVE-FIELD THEORY - APPLICATIONS TO THE CAM ANALYSIS OF THE 2-DIMENSIONAL ISING-MODEL [J].
MINAMI, K ;
NONOMURA, Y ;
KATORI, M ;
SUZUKI, M .
PHYSICA A, 1991, 174 (2-3) :479-503
[10]   THE COHERENT ANOMALY METHOD APPLIED TO A VARIETY OF ISING-MODELS [J].
MONROE, JL .
PHYSICS LETTERS A, 1988, 131 (7-8) :427-429