RANDOM PSEUDO-POLYNOMIAL ALGORITHMS FOR EXACT MATROID PROBLEMS

被引:50
作者
CAMERINI, PM
GALBIATI, G
MAFFIOLI, F
机构
[1] UNIV SIENA,I-53100 SIENNA,ITALY
[2] UNIV PAVIA,I-27100 PAVIA,ITALY
[3] POLITECN MILAN,I-20133 MILAN,ITALY
关键词
D O I
10.1016/0196-6774(92)90018-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we present a random pseudo-polynomial algorithm for the problem of finding a base of specified value in a weighted represented matroid, subject to parity conditions. We also describe a specialized version of the algorithm suitable for finding a base of specified value in the intersection of two matroids. This result generalizes an existing pseudo-polynomial algorithm for computing exact arborescences in weighted graphs. Another (simpler) specialized version of our algorithms is also presented for computing perfect matchings of specified value in weighted graphs. © 1992.
引用
收藏
页码:258 / 273
页数:16
相关论文
共 29 条
[1]  
ADELMAN L, 9TH P ACM S THEOR CO, P151
[2]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[3]   EXACT ARBORESCENCES, MATCHINGS AND CYCLES [J].
BARAHONA, F ;
PULLEYBLANK, WR .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (02) :91-99
[4]  
BARAHONA F, 1981, BALANCING SIGNED TOR
[5]   2 ALGORITHMS FOR WEIGHTED MATROID INTERSECTION [J].
BREZOVEC, C ;
CORNUEJOLS, G ;
GLOVER, F .
MATHEMATICAL PROGRAMMING, 1986, 36 (01) :39-53
[6]   MULTI-CONSTRAINED MATROIDAL KNAPSACK-PROBLEMS [J].
CAMERINI, PM ;
MAFFIOLI, F ;
VERCELLIS, C .
MATHEMATICAL PROGRAMMING, 1989, 45 (02) :211-231
[7]   UNLABELED PARTITION SYSTEMS - OPTIMIZATION AND COMPLEXITY [J].
CAMERINI, PM ;
MAFFIOLI, F .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (03) :426-441
[8]  
CAMERINI PM, 1989, SIAM J DISCRETE MATH, V1, P16
[9]  
CAMERINI PM, 1987, 87014 POL MIL DIP EL
[10]  
CORNEUJOLS G, 1986, MAR WORK C COMP ISS