REGULATION OF CHLAMYDOMONAS FLAGELLAR DYNEIN BY AN AXONEMAL PROTEIN-KINASE

被引:88
作者
HOWARD, DR
HABERMACHER, G
GLASS, DB
SMITH, EF
SALE, WS
机构
[1] EMORY UNIV, SCH MED, DEPT ANAT & CELL BIOL, ATLANTA, GA 30322 USA
[2] EMORY UNIV, SCH MED, DEPT PHARMACOL & BIOCHEM, ATLANTA, GA 30322 USA
[3] UNIV MINNESOTA, DEPT GENET & CELL BIOL, ST PAUL, MN 55108 USA
关键词
D O I
10.1083/jcb.127.6.1683
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wildtype level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N-alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild-type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke-deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 mu M cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP-mediated mechanism.
引用
收藏
页码:1683 / 1692
页数:10
相关论文
共 57 条
[1]   REGULATION OF 22S DYNEIN BY A 29-KD LIGHT-CHAIN [J].
BARKALOW, K ;
HAMASAKI, T ;
SATIR, P .
JOURNAL OF CELL BIOLOGY, 1994, 126 (03) :727-735
[2]   DIFFERENTIAL REGULATION OF PARAMECIUM CILIARY MOTILITY BY CAMP AND CGMP [J].
BONINI, NM ;
NELSON, DL .
JOURNAL OF CELL BIOLOGY, 1988, 106 (05) :1615-1623
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   BENDING PATTERNS OF CHLAMYDOMONAS FLAGELLA .3. A RADIAL SPOKE HEAD DEFICIENT MUTANT AND A CENTRAL PAIR DEFICIENT MUTANT [J].
BROKAW, CJ ;
LUCK, DJL .
CELL MOTILITY AND THE CYTOSKELETON, 1985, 5 (03) :195-208
[5]   ANALYSIS OF THE MOVEMENT OF CHLAMYDOMONAS FLAGELLA - THE FUNCTION OF THE RADIAL-SPOKE SYSTEM IS REVEALED BY COMPARISON OF WILD-TYPE AND MUTANT FLAGELLA [J].
BROKAW, CJ ;
LUCK, DJL ;
HUANG, B .
JOURNAL OF CELL BIOLOGY, 1982, 92 (03) :722-732
[7]   BENDING PATTERNS OF CHLAMYDOMONAS FLAGELLA .4. MUTANTS WITH DEFECTS IN INNER AND OUTER DYNEIN ARMS INDICATE DIFFERENCES IN DYNEIN ARM FUNCTION [J].
BROKAW, CJ ;
KAMIYA, R .
CELL MOTILITY AND THE CYTOSKELETON, 1987, 8 (01) :68-75
[8]   CONTROL OF FLAGELLAR BENDING - A NEW AGENDA BASED ON DYNEIN DIVERSITY [J].
BROKAW, CJ .
CELL MOTILITY AND THE CYTOSKELETON, 1994, 28 (03) :199-204
[9]  
CHILCOTE TJ, 1990, J BIOL CHEM, V265, P17257
[10]   FLAGELLAR RADIAL SPOKE - A MODEL MOLECULAR GENETIC SYSTEM FOR STUDYING ORGANELLE ASSEMBLY [J].
CURRY, AM ;
ROSENBAUM, JL .
CELL MOTILITY AND THE CYTOSKELETON, 1993, 24 (04) :224-232