AN EXTENSION OF THE BOREL-WEIL CONSTRUCTION TO THE QUANTUM GROUP-U Q(N)

被引:29
作者
BIEDENHARN, LC [1 ]
LOHE, MA [1 ]
机构
[1] NO TERR UNIV, FAC SCI, CASUARINA, NT 0811, AUSTRALIA
关键词
D O I
10.1007/BF02097014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Borel-Weil (BW) construction for unitary irreps of a compact Lie group is extended to a construction of all unitary irreps of the quantum group U(q)(n). This q-BW construction uses a recursion procedure for U(q)(n) in which the fiber of the bundle carries an irrep of U(q)(n - 1) x U(q)(1) with sections that are holomorphic functions in the homogeneous space U(q)(n)/U(q)(n - 1) x U(q)(1). Explicit results are obtained for the U(q)(n) irreps and for the related isomorphism of quantum group algebras.
引用
收藏
页码:483 / 504
页数:22
相关论文
共 33 条
[1]   QUANTUM-MECHANICS AND THE GEOMETRY OF THE WEYL CHARACTER FORMULA [J].
ALVAREZ, O ;
SINGER, IM ;
WINDEY, P .
NUCLEAR PHYSICS B, 1990, 337 (02) :467-486
[2]  
ANDREWS G, C BOARD MATH SCI, V66
[3]  
ASKEY R, 1985, MEM AM MATH SOC, V319
[4]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[5]  
BIEDENHARN LC, 1990, FROM SYMMETRIES TO STRINGS : FORTY YEARS OF ROCHESTER CONFERENCES, P189
[6]  
BIEDENHARN LC, 1990, LECT NOTES PHYS, V0370, P00067
[7]  
BIEDENHARN LC, 1984, ENCY MATH ITS APPLIC, V8
[8]  
BOREL A, 1954, SEMINAIRE BOURBAKI
[9]  
BOTT R, 1957, ANN MATH, V66
[10]  
Drinfeld V. G., 1986, P INT C MATH, V2, P798