SIMPLE MAPS WITH FRACTAL DIFFUSION-COEFFICIENTS

被引:92
作者
KLAGES, R
DORFMAN, JR
机构
[1] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
关键词
D O I
10.1103/PhysRevLett.74.387
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider chains of one-dimensional, piecewise linear, chaotic maps with uniform slope. We study the diffusive behavior of an initially nonuniform distribution of points as a function of the slope of the map by solving the Frobenius-Perron equation. For Markov partition values of the slope, we relate the diffusion coefficient to eigenvalues of the topological transition matrix. The diffusion coefficient obtained shows a fractal structure as a function of the slope of the map. This result may be typical for a wide class of maps, such as two-dimensional sawtooth maps. © 1995 The American Physical Society.
引用
收藏
页码:387 / 390
页数:4
相关论文
共 52 条
[1]  
[Anonymous], 1993, CAMBRIDGE NONLINEAR, DOI DOI 10.1017/CBO9780511524585
[2]  
[Anonymous], 2002, CHAOS DYNAMICAL SYST
[3]   DIFFUSION-COEFFICIENT FOR IONS IN THE PRESENCE OF A COHERENT LOWER HYBRID WAVE [J].
ANTONSEN, TM ;
OTT, E .
PHYSICS OF FLUIDS, 1981, 24 (09) :1635-1640
[4]   DIFFUSIVE DYNAMICS AND PERIODIC-ORBITS OF DYNAMIC-SYSTEMS [J].
ARTUSO, R .
PHYSICS LETTERS A, 1991, 160 (06) :528-530
[5]   PERIODIC ORBIT THEORY OF ANOMALOUS DIFFUSION [J].
ARTUSO, R ;
CASATI, G ;
LOMBARDI, R .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :62-64
[6]   TOPOLOGICAL-ENTROPY OF ONE-DIMENSIONAL MAPS - APPROXIMATIONS AND BOUNDS [J].
BALMFORTH, NJ ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICAL REVIEW LETTERS, 1994, 72 (01) :80-83
[7]   FIELD-DEPENDENT CONDUCTIVITY AND DIFFUSION IN A 2-DIMENSIONAL LORENTZ GAS [J].
BARANYAI, A ;
EVANS, DJ ;
COHEN, EGD .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (5-6) :1085-1098
[8]  
BEAM RM, 1991, NASA103900 TECHN MEM
[9]  
BERLIN TH, 1952, PHYS REV, V86, P8211
[10]  
BOYARSKI A, 1979, T AM MATH SOC, V225, P243