FORMULAS FOR THE CHADI-COHEN PROCESS

被引:10
作者
MACOT, L
FRANK, B
机构
[1] Department of Physics, Concordia University, Montréal, Que. H3G 1M8
来源
PHYSICAL REVIEW B | 1990年 / 41卷 / 07期
关键词
D O I
10.1103/PhysRevB.41.4469
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the square and cubic lattices, formulas are designed which yield, for k-space summations over the Brillouin zone, the special points in the irreducible Brillouin zone and the corresponding weighting factors prescribed by the Chadi-Cohen method. For the simple-cubic and fcc lattices these formulas at stage correspond to those of Monkhorst and Pack at stage 2. These formulas allow one to compute the summations to any order of approximation, not necessarily successively. It is demonstrated how extrapolation in the inverse of the number of special points may be used to speed up the calculations. Furthermore, the formulas are shown to be useful for numerically evaluating the integrals of singular functions in two dimensions. © 1990 The American Physical Society.
引用
收藏
页码:4469 / 4474
页数:6
相关论文
共 14 条
[1]   MEAN-VALUE POINT IN BRILLOUIN ZONE [J].
BALDERESCHI, A .
PHYSICAL REVIEW B, 1973, 7 (12) :5212-5215
[2]   SPECIAL POINTS IN BRILLOUIN ZONE [J].
CHADI, DJ ;
COHEN, ML .
PHYSICAL REVIEW B, 1973, 8 (12) :5747-5753
[3]   SPECIAL POINTS FOR TWO-DIMENSIONAL BRILLOUIN-ZONE OR WIGNER-SEITZ CELL INTEGRATIONS [J].
CHOW, HC ;
VOSKO, SH .
CANADIAN JOURNAL OF PHYSICS, 1980, 58 (04) :497-503
[4]   SPECIAL POINTS IN 2-DIMENSIONAL BRILLOUIN ZONE [J].
CUNNINGHAM, SL .
PHYSICAL REVIEW B, 1974, 10 (12) :4988-4994
[5]   USE OF THE LARGE UNIT-CELL APPROACH FOR GENERATING SPECIAL POINTS OF THE BRILLOUIN-ZONE [J].
EVARESTOV, RA ;
SMIRNOV, VP .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1980, 99 (02) :463-470
[6]   FINITE SUM APPROXIMATIONS TO BRILLOUIN-ZONE INTEGRALS WITH SYMMETRIZED PLANE-WAVES [J].
FOLLAND, NO ;
OSMAN, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (08) :1538-1546
[7]   ISING-MODEL CRITICAL EXPONENT-ETA FROM A CRITICALITY EQUATION [J].
FRANK, B ;
MACOT, L ;
BASSIAS, KV ;
DANINO, M .
CANADIAN JOURNAL OF PHYSICS, 1989, 67 (10) :946-951
[8]   MANY SPECIAL POINT SCHEME FOR NONCUBIC LATTICES [J].
LINCHUNG, PJ .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1978, 85 (02) :743-748
[9]  
MACOT L, 1985, THESIS CONCORDIA U M
[10]  
MIGNEN J, 1978, J PHYS-PARIS, V37, P925