STRUCTURE-ACTIVITY ANALYSES OF BETA-AMYLOID PEPTIDES - CONTRIBUTIONS OF THE BETA-25-35 REGION TO AGGREGATION AND NEUROTOXICITY

被引:700
作者
PIKE, CJ [1 ]
WALENCEWICZWASSERMAN, AJ [1 ]
KOSMOSKI, J [1 ]
CRIBBS, DH [1 ]
GLABE, CG [1 ]
COTMAN, CW [1 ]
机构
[1] UNIV CALIF IRVINE,DEPT MOLEC BIOL & BIOCHEM,IRVINE,CA 92717
关键词
ALZHEIMERS DISEASE; BETA-AMYLOID PROTEIN; NEURODEGENERATION; PEPTIDE AGGREGATION; BETA-SHEET CONFORMATION; CIRCULAR DICHROISM;
D O I
10.1046/j.1471-4159.1995.64010253.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of beta-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of beta-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of beta-amyloid, beta 25-35, and the full-length protein, beta 1-42. We examine the effects of amino acid residue deletions and substitutions on the ability of beta-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant beta-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of beta 25-35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the beta 33-35 region. In beta 1-42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of beta-sheet secondary structure in aggregating, toxic beta-amyloid peptides but not in nonaggregating, nontoxic beta-amyloid peptides. Together, these data further define the primary and secondary structures of beta-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 47 条
[1]   SOLUTION CONFORMATIONS AND AGGREGATIONAL PROPERTIES OF SYNTHETIC AMYLOID BETA-PEPTIDES OF ALZHEIMERS-DISEASE - ANALYSIS OF CIRCULAR-DICHROISM SPECTRA [J].
BARROW, CJ ;
YASUDA, A ;
KENNY, PTM ;
ZAGORSKI, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (04) :1075-1093
[2]   SOLUTION STRUCTURES OF BETA PEPTIDE AND ITS CONSTITUENT FRAGMENTS - RELATION TO AMYLOID DEPOSITION [J].
BARROW, CJ ;
ZAGORSKI, MG .
SCIENCE, 1991, 253 (5016) :179-182
[3]   FLUOROMETRIC ASSAY OF PROTEINS IN NANOGRAM RANGE [J].
BOHLEN, P ;
STEIN, S ;
DAIRMAN, W ;
UDENFRIEND, S .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1973, 155 (01) :213-220
[4]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[5]  
BURDICK D, 1992, J BIOL CHEM, V267, P546
[6]   METHODOLOGICAL VARIABLES IN THE ASSESSMENT OF BETA-AMYLOID NEUROTOXICITY [J].
BUSCIGLIO, J ;
LORENZO, A ;
YANKNER, BA .
NEUROBIOLOGY OF AGING, 1992, 13 (05) :609-612
[7]   INVITRO FORMATION OF AMYLOID FIBRILS FROM 2 SYNTHETIC PEPTIDES OF DIFFERENT LENGTHS HOMOLOGOUS TO ALZHEIMERS-DISEASE BETA-PROTEIN [J].
CASTANO, EM ;
GHISO, J ;
PRELLI, F ;
GOREVIC, PD ;
MIGHELI, A ;
FRANGIONE, B .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1986, 141 (02) :782-789
[8]   EARLY-ONSET ALZHEIMERS-DISEASE CAUSED BY MUTATIONS AT CODON-717 OF THE BETA-AMYLOID PRECURSOR PROTEIN GENE [J].
CHARTIERHARLIN, MC ;
CRAWFORD, F ;
HOULDEN, H ;
WARREN, A ;
HUGHES, D ;
FIDANI, L ;
GOATE, A ;
ROSSOR, M ;
ROQUES, P ;
HARDY, J ;
MULLAN, M .
NATURE, 1991, 353 (6347) :844-846
[9]   THE ACUTE NEUROTOXICITY AND EFFECTS UPON CHOLINERGIC AXONS OF INTRACEREBRALLY INJECTED BETA-AMYLOID IN THE RAT-BRAIN [J].
EMRE, M ;
GEULA, C ;
RANSIL, BJ ;
MESULAM, MM .
NEUROBIOLOGY OF AGING, 1992, 13 (05) :553-559
[10]   APOPTOSIS MEDIATED NEUROTOXICITY INDUCED BY CHRONIC APPLICATION OF BETA-AMYLOID FRAGMENT 25-35 [J].
FORLONI, G ;
CHIESA, R ;
SMIROLDO, S ;
VERGA, L ;
SALMONA, M ;
TAGLIAVINI, F ;
ANGERETTI, N .
NEUROREPORT, 1993, 4 (05) :523-526