A SHEAR-DEFORMABLE PLATE ELEMENT WITH AN EXACT THIN LIMIT

被引:59
作者
AURICCHIO, F [1 ]
TAYLOR, RL [1 ]
机构
[1] UNIV CALIF BERKELEY, DEPT CIVIL ENGN, BERKELEY, CA 94720 USA
关键词
D O I
10.1016/0045-7825(94)90009-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a quadrilateral finite element developed within the framework of a shear deformable plate theory. The interpolation for the rotation takes advantage of internal rotational degrees of freedom (through the use of bubble functions), while the interpolation for the transverse displacement is linked to the nodal rotations. A careful study of the element behavior is performed using an extensive set of mixed patch tests; results from several numerical examples are also presented. The element has proper rank and excellent interpolating capacity. Moreover, without using any ad-hoc assumption (e.g., energy balancing schemes) the element presents no locking effects at all; in fact, the shear energy may be set identically equal to zero without introducing any ill-conditioning in the problem, thus recovering a proper thin plate limit.
引用
收藏
页码:393 / 412
页数:20
相关论文
共 53 条
[1]  
[Anonymous], 1986, ACTA MECH SIN, DOI DOI 10.1007/BF02485859
[2]  
AURICCHIO F, 1993, UCBSEMM9310 U CAL BE
[3]  
AURICCHIO F, 1991, UCBSEMM9104 U CAL BE
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]   BENCHMARK COMPUTATION AND PERFORMANCE EVALUATION FOR A RHOMBIC PLATE BENDING PROBLEM [J].
BABUSKA, I ;
SCAPOLLA, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (01) :155-179
[6]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[7]   VIRTUAL BUBBLES AND GALERKIN-LEAST-SQUARES TYPE METHODS (GA.L.S.) [J].
BAIOCCHI, C ;
BREZZI, F ;
FRANCA, LP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 105 (01) :125-141
[8]   A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) :367-383
[9]   EVALUATION OF A NEW QUADRILATERAL THIN PLATE BENDING ELEMENT [J].
BATOZ, JL ;
BENTAHAR, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (11) :1655-1677
[10]  
BAZELEY GP, 1965, P C MATRIX METHODS S