TIME HARMONIC ELECTROMAGNETIC-WAVES IN AN INHOMOGENEOUS-MEDIUM

被引:13
作者
COLTON, D [1 ]
KRESS, R [1 ]
机构
[1] UNIV GOTTINGEN,INST NUMER & ANGEW MATH,W-3400 GOTTINGEN,GERMANY
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500031516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the scattering of time harmonic electromagnetic waves by an inhomogeneous medium of compact support, i.e. the permittivity epsilon = epsilon(x) and the conductivity sigma = sigma(x) are functions of x epsilon-R3. Existence, uniqueness and regularity results are established for the direct scattering problem. Then, based on existence and uniqueness results for the exterior and interior impedence boundary value problem, a method is presented for solving the inverse scattering problem.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 12 条
[1]   FAR FIELD PATTERNS AND INVERSE SCATTERING PROBLEMS FOR IMPERFECTLY CONDUCTING OBSTACLES [J].
ANGELL, TS ;
COLTON, D ;
KRESS, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 106 :553-569
[2]   A NEW METHOD FOR SOLVING THE INVERSE SCATTERING PROBLEM FOR ACOUSTIC-WAVES IN AN INHOMOGENEOUS-MEDIUM [J].
COLTON, D ;
MONK, P .
INVERSE PROBLEMS, 1989, 5 (06) :1013-1026
[3]   FAR FIELD PATTERNS AND THE INVERSE SCATTERING PROBLEM FOR ELECTROMAGNETIC-WAVES IN AN INHOMOGENEOUS-MEDIUM [J].
COLTON, D ;
PAIVARINTA, L .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :561-575
[4]  
COLTON D, IN PRESS SIAM J MATH
[5]  
Colton D., 1981, MATH METHODS APPLIED, V3, P475
[6]  
Colton D., 1983, INTEGRAL EQUATION ME
[7]  
HAHNER P, 1987, THESIS GOTTINGEN
[9]  
Leis R., 1986, INITIAL BOUNDARY VAL, DOI 10.1007/978-3-663-10649-4
[10]  
Muller C., 1957, GRUNDPROBLEME MATH T