TESTING A SIMPLE POLYGON FOR MONOTONICITY OPTIMALLY IN PARALLEL

被引:3
作者
CHEN, DZ
GUHA, S
机构
[1] UNIV WISCONSIN,DEPT ELECT ENGN & COMP SCI,MILWAUKEE,WI 53201
[2] UNIV NOTRE DAME,DEPT COMP SCI & ENGN,NOTRE DAME,IN 46556
基金
美国国家科学基金会;
关键词
PARALLEL ALGORITHMS; COMPUTATIONAL GEOMETRY; SIMPLE POLYGONS;
D O I
10.1016/0020-0190(93)90080-S
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that, in parallel, an n-vertex simple polygon can be tested for monotonicity optimally in 0(log n) time using 0(n/log n) EREW PRAM processors, and we present two different optimal parallel algorithms for solving this problem. Our result leads to an optimal parallel algorithm for triangulating simple polygons that runs in 0(log;n) time using 0(n/log n) EREW PRAM processors if the polygons are monotone.
引用
收藏
页码:325 / 331
页数:7
相关论文
共 18 条
[1]   AN OPTIMAL PARALLEL ALGORITHM FOR THE MINIMUM CIRCLE-COVER PROBLEM [J].
ATALLAH, MJ ;
CHEN, DZ .
INFORMATION PROCESSING LETTERS, 1989, 32 (04) :159-165
[2]   CASCADING DIVIDE-AND-CONQUER - A TECHNIQUE FOR DESIGNING PARALLEL ALGORITHMS [J].
ATALLAH, MJ ;
COLE, R ;
GOODRICH, MT .
SIAM JOURNAL ON COMPUTING, 1989, 18 (03) :499-532
[3]   ADAPTIVE BITONIC SORTING - AN OPTIMAL PARALLEL ALGORITHM FOR SHARED-MEMORY MACHINES [J].
BILARDI, G ;
NICOLAU, A .
SIAM JOURNAL ON COMPUTING, 1989, 18 (02) :216-228
[4]  
CHAZELLE B, 1990, 31ST P ANN IEEE S F, P220
[5]  
CHEN DZ, 1990, 28TH P ALL C COMM CO, P818
[6]   PARALLEL MERGE SORT [J].
COLE, R .
SIAM JOURNAL ON COMPUTING, 1988, 17 (04) :770-785
[7]  
COLE R, 1988, 4TH P ANN S COMP GEO, P201
[8]  
ElGindy H., 1989, Visual Computer, V5, P68, DOI 10.1007/BF01901482
[9]   TRIANGULATING A POLYGON IN PARALLEL [J].
GOODRICH, MT .
JOURNAL OF ALGORITHMS, 1989, 10 (03) :327-351
[10]  
GOODRICH MT, 1987, EFFICIENT PARALLEL T