A COMPUTER-SIMULATION STUDY OF THE TEMPERATURE-DEPENDENCE OF THE HYDROPHOBIC HYDRATION

被引:337
作者
GUILLOT, B
GUISSANI, Y
机构
[1] Laboratoire de Physique Théorique des Liquides, Université Pierre and Marie Curie, C.N.R.S. URA 765, 75252 Paris, Boîte 121
关键词
D O I
10.1063/1.465634
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The test particle method is used to evaluate by molecular dynamics calculations the solubility of rare gases and of methane in water between the freezing point and the critical point. A quantitative agreement is obtained between solubility data and simulation results when the simulated water is modeled by the extended simple point charge model (SPCE). From a thermodynamical point of view, it is shown that the hierarchy of rare gases solubilities in water is governed by the solute-water interaction energy while an entropic term of cavity formation is found to be responsible for the peculiar temperature dependence of the solubility along the coexistence curve, and more precisely, of the solubility minimum exhibited by all the investigated solutes. Near the water critical point, the asymptotic behaviors of the Henry's constant and of the vapor-liquid partition coefficient, respectively, as deduced from the simulation data follow with a good accuracy the critical laws recently proposed in the literature for these quantities. Moreover, the calculated partial molar volume of the solute shows a steep increase above 473 K and becomes proportional to the isothermal compressibility of the pure solvent in the vicinity of the critical point as it is observed experimentally. From a microscopic point of view, the evaluation of the solute-solvent pair distribution functions permits to establish a relationship between the increase of the solubility with the decrease of the temperature in cold water on the one hand, and the formation of cages of the clathrate-type around the solute on the other hand. Nevertheless, as soon as the boiling point of water is reached the computer simulation shows that the water molecules of the first hydration shell are no longer oriented tangentially to the solute and tend to reorientate towards the bulk. At higher temperatures a deficit of water molecules progressively appears around the solute, a deficit which is directly associated with an increase of the partial molar volume. Although this phenomenon could be related to what is observed in supercritical mixtures it is emphasized that no long range critical fluctuation is present in the simulated sample.
引用
收藏
页码:8075 / 8094
页数:20
相关论文
共 128 条
[1]   STRUCTURE OF A DILUTE AQUEOUS-SOLUTION OF ARGON - MONTE-CARLO SIMULATION [J].
ALAGONA, G ;
TANI, A .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (01) :580-588
[2]   A SEMIEMPIRICAL PROCEDURE TO DESCRIBE THE THERMODYNAMICS OF DISSOLUTION OF NONPOLAR GASES IN WATER [J].
ALVAREZ, J ;
FERNANDEZPRINI, R .
FLUID PHASE EQUILIBRIA, 1991, 66 (03) :309-326
[3]   FIRE AND ICE UNDER THE DEEP-SEA FLOOR [J].
APPENZELLER, T .
SCIENCE, 1991, 252 (5014) :1790-1792
[4]   SOLUBILITY OF GASES IN LIQUIDS [J].
BATTINO, R ;
CLEVER, HL .
CHEMICAL REVIEWS, 1966, 66 (04) :395-+
[5]  
Ben-Naim A., 1974, WATER AQUEOUS SOLUTI
[6]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[7]   STANDARD THERMODYNAMICS OF TRANSFER - USES AND MISUSES [J].
BENNAIM, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (07) :792-803
[8]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[9]   GAS SOLUBILITIES NEAR SOLVENT CRITICAL-POINT [J].
BEUTIER, D ;
RENON, H .
AICHE JOURNAL, 1978, 24 (06) :1122-1125
[10]   APPARENT MOLAR VOLUMES OF AQUEOUS ARGON, ETHYLENE, AND XENON FROM 300-K TO 716-K [J].
BIGGERSTAFF, DR ;
WOOD, RH .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (07) :1988-1994