SMOOTH DISTRIBUTION GROUP AND SCHRODINGER EQUATION IN LP(RN)

被引:27
作者
BALABANE, M [1 ]
EMAMIRAD, HA [1 ]
机构
[1] ATOM ENERGY ORG IRAN,NUCL RES CTR,TEHRAN,IRAN
关键词
D O I
10.1016/0022-247X(79)90075-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In College de France, Seminaire E.D.P. II, Nov. 1963-May 1964, Peetre has introduced the smooth distribution semi-group which is discussed here. This notion is redefined by introducing a functional space T, which measures the regularity of such a distribution. This allows us to give a spectral characterization of such groups. We show that the iterated resolvent of the infinitesimal generator of a smooth distribution group satisfies the relation {norm of matrix}(λ-A)-q{norm of matrix}L(X)≤cqk|λ|k|, Re λ ≠ 0. The application of this notion is illustrated by the study of the Schrödinger equation in Lp(Rn). © 1979.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 10 条
[1]  
Chazarain J., 1971, J. Funct. Anal, V7, P386, DOI 10.1016/0022-1236(71)90027-9
[2]  
Da Prato G., 1967, ANN MAT PUR APPL, V76, P377
[3]   ESTIMATES FOR TRANSLATION INVARIANT OPERATORS IN LP SPACES [J].
HORMANDER, L .
ACTA MATHEMATICA, 1960, 104 (1-2) :93-140
[4]  
Kato T., 1995, PERTURBATION THEORY, V132
[5]  
Lanconelli E., 1968, Boll. Un. Mat. Ital, V4, P591
[6]  
Lion J.L., 1960, Portugal. Math, V19, P141
[7]  
PEETRE J, 1964, NOV COLL FRANC SEM E, P76
[8]  
Sj?strand S., 1970, ANN SCUOLA NORM SUP, V24, P331
[9]  
Stein E.M., 1970, Singular Integrals and Differentiability Properties of Functions, V30
[10]  
Yoshinaga K.., 1965, B KYUSHU I TECH, V12, P1