MULTILEVEL ITERATION FOR MIXED FINITE-ELEMENT SYSTEMS WITH PENALTY

被引:25
作者
CAI, ZQ [1 ]
GOLDSTEIN, CI [1 ]
PASCIAK, JE [1 ]
机构
[1] BROOKHAVEN NATL LAB,DEPT APPL SCI,UPTON,NY 11973
关键词
MIXED APPROXIMATION OF ELLIPTIC BOUNDARY VALUE PROBLEMS; MULTIGRID TECHNIQUES; MULTILEVEL; PRECONDITIONERS; HIERARCHICAL PRECONDITIONERS;
D O I
10.1137/0914065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors consider the solution of the discrete systems that arises when a mixed finite element approach is used to approximate the solution of second-order elliptic boundary value problems. By the introduction of a penalty parameter, these equations can be approximated by the solution of a symmetric and positive definite penalty system on the velocity subspace. Iterative procedures are developed and analyzed for this penalty system based on the hierarchical basis approach as well as on the standard multigrid approach. Finally, numerical experiments are presented that illustrate the convergence behavior suggested by the theory.
引用
收藏
页码:1072 / 1088
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1977, MATH ASPECTS FINITE
[2]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[3]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[4]  
BERCOVIER M, 1978, RAIRO-ANAL NUMER-NUM, V12, P211
[5]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[6]   MULTIGRID METHODS FOR NONCONFORMING FINITE-ELEMENT METHODS [J].
BRAESS, D ;
VERFURTH, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :979-986
[7]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[8]   THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :467-488
[9]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[10]  
BRAMBLE JH, 1987, MATH COMPUT, V49, P311, DOI 10.1090/S0025-5718-1987-0906174-X