KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:158
作者
EDWARDS, WS
TUCKERMAN, LS
FRIESNER, RA
SORENSEN, DC
机构
[1] UNIV TEXAS,DEPT PHYS,AUSTIN,TX 78712
[2] UNIV TEXAS,CTR NONLINEAR DYNAM,AUSTIN,TX 78712
[3] UNIV TEXAS,DEPT MATH,AUSTIN,TX 78712
[4] COLUMBIA UNIV,DEPT CHEM,NEW YORK,NY 10027
[5] RICE UNIV,DEPT COMPUTAT & APPL MATH,HOUSTON,TX 77251
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcph.1994.1007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand side and of its Jacobian, without inversion of the viscous operator. Time evolution is performed by a nonlinear extension of the method of exponential propagation. Steady states are calculated by inexact Krylov-Newton iteration using ORTHORES and GMRES. Linear stability analysis is carried out using an implicitly restarted Arnoldi process with implicit polynomial filters. A detailed implementation is described for a pseudospectral calculation of the stability of Taylor vortices with respect to wavy vortices in the Couette-Taylor problem. © 1994 Academic Press, Inc.
引用
收藏
页码:82 / 102
页数:21
相关论文
共 60 条
[31]  
GRESHO PM, 1991, ANN REV FLUID MECH, V23
[32]   NON-LINEAR TAYLOR VORTICES AND THEIR STABILITY [J].
JONES, CA .
JOURNAL OF FLUID MECHANICS, 1981, 102 (JAN) :249-261
[33]   NUMERICAL-METHODS FOR THE TRANSITION TO WAVY TAYLOR VORTICES [J].
JONES, CA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 61 (02) :321-344
[34]  
KARUSH W, 1951, PAC J MATH, V1, P233, DOI DOI 10.2140/PJM.1951.1.233
[35]  
KLEISER L, 1980, 3RD P GAMM C NUM MET, P165
[36]   ON RELATIVE IMPORTANCE OF TAYLOR-VORTEX AND NON-AXISYMMETRIC MODES IN FLOW BETWEEN ROTATING CYLINDERS [J].
KRUEGER, ER ;
GROSS, A ;
DIPRIMA, RC .
JOURNAL OF FLUID MECHANICS, 1966, 24 :521-&
[37]   PSEUDOSPECTRAL METHODS FOR SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
KU, HC ;
TAYLOR, TD ;
HIRSH, RS .
COMPUTERS & FLUIDS, 1987, 15 (02) :195-214
[38]   SOLUTION OF SYSTEMS OF LINEAR EQUATIONS BY MINIMIZED ITERATIONS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (01) :33-53
[39]   PRIMARY INSTABILITIES AND BICRITICALITY IN FLOW BETWEEN COUNTER-ROTATING CYLINDERS [J].
LANGFORD, WF ;
TAGG, R ;
KOSTELICH, EJ ;
SWINNEY, HL ;
GOLUBITSKY, M .
PHYSICS OF FLUIDS, 1988, 31 (04) :776-785
[40]   A COMPARISON OF DIFFERENT PROPAGATION SCHEMES FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
LEFORESTIER, C ;
BISSELING, RH ;
CERJAN, C ;
FEIT, MD ;
FRIESNER, R ;
GULDBERG, A ;
HAMMERICH, A ;
JOLICARD, G ;
KARRLEIN, W ;
MEYER, HD ;
LIPKIN, N ;
RONCERO, O ;
KOSLOFF, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) :59-80