COMPUTER-SIMULATIONS OF PERITONEAL-FLUID TRANSPORT IN CAPD

被引:249
作者
RIPPE, B
STELIN, G
HARALDSSON, B
机构
[1] SAHLGRENS UNIV HOSP,DEPT NEPHROL,S-41345 GOTHENBURG,SWEDEN
[2] UNIV LUND HOSP,DEPT NEPHROL,S-22185 LUND,SWEDEN
[3] GOTHENBURG UNIV,DEPT PHYSIOL,S-41124 GOTHENBURG,SWEDEN
关键词
D O I
10.1038/ki.1991.216
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
To model the changes in intraperitoneal dialysate volume (IPV) occurring over dwell time under various conditions in continuous ambulatory peritoneal dialysis (CAPD), we have, using a personal computer (PC), numerically integrated the phenomenological equations that describe the net ultrafiltration (UF) flow existing across the peritoneal membrane in every moment of a dwell. Computer modelling was performed according to a three-pore model of membrane selectivity as based on current concepts in capillary physiology. This model comprises small "paracellular" pores (radius almost-equal-to 47 angstrom) and "large" pores (radius almost-equal-to 250 angstrom), together accounting for almost-equal-to 98% of the total UF-coefficient (L(p)S), and also "transcellular" pores (pore radius almost-equal-to 4 to 5 angstrom) accounting for 1.5% of L(p)S. Simulated curves made a good fit to IPV versus time data obtained experimentally in adult patients, using either 1.36 or 3.86% glucose dialysis solutions, under control conditions; when the peritoneal UF-coefficient was set to 0.082 ml/min/mm Hg, the glucose reflection coefficient was 0.043 and the peritoneal lymph flow was set to 0.3 ml/min. Also, theoretical predictions regarding the IPV versus time curves agreed well with the computer simulated results for perturbed values of effective peritoneal surface area, L(p)S, glucose permeability-surface area product (PS or "MTAC"), intraperitoneal dialysate volume and dialysate glucose concentration. Thus, increasing the peritoneal surface area caused the IPV versus time curves to peak earlier than during control, while the maximal volume ultrafiltered was not markedly affected. However, increasing the glucose PS caused both a reduction in the IPV versus time curve "peak time" and in the "peak height" of the curves. The latter pattern was also seen when the dialysate volume was reduced. It is suggested that computer modelling based on a three-pore model of membrane selectivity may be a useful tool for describing the IPV versus time relationships under various conditions in CAPD.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 41 条
[1]  
ARTHURSON G, 1971, 6TH EUR C MICR AALB, P197
[2]   HYDRAULICALLY-INDUCED CONVECTIVE SOLUTE TRANSPORT ACROSS THE RABBIT PERITONEUM [J].
BELL, JL ;
LEYPOLDT, JK ;
FRIGON, RP ;
HENDERSON, LW .
KIDNEY INTERNATIONAL, 1990, 38 (01) :19-27
[3]  
Crone C., 1984, HDB PHYSL CARDIOVASC, VIV, P411
[4]  
DRAKE R, 1978, MICROVASC RES, V15, P259
[5]   A DISTRIBUTED MODEL OF PERITONEAL-PLASMA TRANSPORT - THEORETICAL CONSIDERATIONS [J].
FLESSNER, MF ;
DEDRICK, RL ;
SCHULTZ, JS .
AMERICAN JOURNAL OF PHYSIOLOGY, 1984, 246 (04) :R597-R607
[6]   PERITONEAL LYMPHATIC UPTAKE OF FIBRINOGEN AND ERYTHROCYTES IN THE RAT [J].
FLESSNER, MF ;
PARKER, RJ ;
SIEBER, SM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1983, 244 (01) :H89-H96
[7]   ACTION OF HISTAMINE ON THE MESENTERIC MICROVASCULATURE [J].
FOX, J ;
GALEY, F ;
WAYLAND, H .
MICROVASCULAR RESEARCH, 1980, 19 (01) :108-126
[8]  
HALLETT MD, 1989, PERITONEAL DIALYSIS, P380
[9]   CALCIUM DEPENDENCE OF HISTAMINE-INDUCED INCREASES IN CAPILLARY-PERMEABILITY IN ISOLATED PERFUSED RAT HINDQUARTERS [J].
HARALDSSON, B ;
ZACKRISSON, U ;
RIPPE, B .
ACTA PHYSIOLOGICA SCANDINAVICA, 1986, 128 (02) :247-258
[10]   PERITONEAL TRANSPORT IN CAPD PATIENTS WITH PERMANENT LOSS OF ULTRAFILTRATION CAPACITY [J].
HEIMBURGER, O ;
WANIEWSKI, J ;
WERYNSKI, A ;
TRANAEUS, A ;
LINDHOLM, B .
KIDNEY INTERNATIONAL, 1990, 38 (03) :495-506