PHASE-SPACE DYNAMICS AND QUANTUM-MECHANICS

被引:5
作者
DEAL, WJ
机构
[1] Department of Chemistry, University of California, Riverside, 92521, CA
来源
THEORETICA CHIMICA ACTA | 1990年 / 77卷 / 04期
关键词
Phase-space dynamics; Quantum theory; Schrödinger equation;
D O I
10.1007/BF01116547
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An n-dimensional system with a classical Hamiltonian H(p, q, t) may be described by a phase-space distribution function D(q, p, t). The dynamical equation for D(q, p, t) is postulated to be {Mathematical expression} where σt is small and the phase angle 2πS/h is defined by {Mathematical expression} with {Mathematical expression} The dynamical equation follows from a simple conceptual picture for propagation of the distribution function in phase space. This equation leads to (1) solutions of the form D(q, p, t)=h-n/2 φ* (q, t)a(p t)ei2πq · p/h where φ(q, t) and a(p, t) are related as Fourier transforms, and (2) the time-dependent Schrödinger equation. © 1990 Springer-Verlag.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 43 条
[1]  
[Anonymous], [No title captured]
[2]   STATISTICAL INTERPRETATION OF QUANTUM MECHANICS [J].
BALLENTI.LE .
REVIEWS OF MODERN PHYSICS, 1970, 42 (04) :358-&
[3]  
Bell J.S., 1987, QUANTUM IMPLICATIONS, P227
[4]  
BLINDER SM, 1974, F QUANTUM DYNAMICS, P49
[5]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[6]   A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2. [J].
BOHM, D .
PHYSICAL REVIEW, 1952, 85 (02) :180-193
[7]  
Bopp F., 1956, ANN I HENRI POINCARE, V15, P81
[8]  
BRACEWELL RN, 1978, FOURIER TRANSFORM IT, P7
[9]   GENERALIZED PHASE-SPACE DISTRIBUTION FUNCTIONS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :781-&
[10]   CAN QUANTUM MECHANICS BE FORMULATED AS A CLASSICAL PROBABILITY THEORY [J].
COHEN, L .
PHILOSOPHY OF SCIENCE, 1966, 33 (04) :317-322