LOW-TEMPERATURE PHASES OF ITINERANT FERMIONS INTERACTING WITH CLASSICAL PHONONS - THE STATIC HOLSTEIN MODEL

被引:19
作者
LEBOWITZ, JL
MACRIS, N
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[2] ECOLE POLYTECH FED LAUSANNE,INST PHYS THEOR,CH-1015 LAUSANNE,SWITZERLAND
关键词
ITINERANT FERMIONS; LOW-TEMPERATURE PHASES; ANTIFERROMAGNETIC ORDERING; STATIC HOLSTEIN MODEL; CLASSICAL PHONONS;
D O I
10.1007/BF02188657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider models of independent itinerant fermions interacting with classical continuous or discrete variables (spins), the static Holstein model being a special case. We prove for all values of the fermion-spin coupling and a special value of the fermion chemical potential and classical magnetic field, at which the average fermion density is one-half and the average total spin is zero, that there are two degenerate ground states of period two with antiferromagnetic order for the spins and fermions. The existence of two corresponding low-temperature phases is proven for large coupling and dimension two or more by using a Peierls argument. This generalizes results of Kennedy and Lieb for the Falicov-Kimball model.
引用
收藏
页码:91 / 123
页数:33
相关论文
共 25 条
[1]   CHAOTIC POLARONIC AND BIPOLARONIC STATES IN THE ADIABATIC HOLSTEIN MODEL [J].
AUBRY, S ;
ABRAMOVICI, G ;
RAIMBAULT, JL .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :675-780
[2]  
AUBRY S, 1991, MICROSCOPIC ASPECTS, P105
[3]   EXACT RESULTS FOR THE DISTRIBUTION OF THE F-LEVEL GROUND-STATE OCCUPATION IN THE SPINLESS FALICOV-KIMBALL MODEL [J].
BRANDT, U ;
SCHMIDT, R .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (01) :45-53
[4]  
BRASCAMP HJ, 1975, FUNCTIONAL INTEGRATI, pCH1
[5]  
Brazovskii S.A., 1982, SOV PHYS JETP, V56, P212
[6]  
Choquard P., 1967, ANHARMONIC CRYSTAL
[7]  
FALICOV LM, 1967, PHYS REV LETT, V22, P957
[8]   2-STATE ONE-DIMENSIONAL SPINLESS FERMI GAS [J].
FREERICKS, JK ;
FALICOV, LM .
PHYSICAL REVIEW B, 1990, 41 (04) :2163-2172
[9]  
FREERICKS JK, 1994, GROUND STATE GENERAL
[10]  
GALLAVOTTI G, 1971, J MATH PHYS, V12, P1129