FOURIER ASYMPTOTICS OF FRACTAL MEASURES

被引:93
作者
STRICHARTZ, RS [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-1236(90)90009-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A measure μ on Rn will be called locally uniformly α-dimensional if μ(Br(x)) ≤ crα for all r ≤ 1 and all x, where Br(x) denotes the ball of radius r about x. For f{hook} ε{lunate} L2(dμ), the measure f{hook} dμ is in I′ so (f{hook} dμ) is well-defined. We show it is locally in L2 and sup r≥1rδ-n∫B|(f dμ)^ (ξ)|2 dξ ≤ c ∥f∥2· Under additional hypotheses we show that lim r→∞rδ-n∫B|(f dμ)^ (ξ)|2 (ξ)|2 dξ is comparable in size to ∥f{hook}∥2 2. A number of other related results are established. The special case when α is an integer and μ is the surface measure on a C1 manifold was treated by S. Agmon and L. Hörmander (J. Analyse Math. 30, 1976, 1-38). © 1990.
引用
收藏
页码:154 / 187
页数:34
相关论文
共 26 条
[1]  
Adams D.R., 1971, ANN SCUOLA NORM SUP, V25, P203
[2]  
ADAMS DR, 1973, STUD MATH, V48, P99
[3]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[5]   ASYMPTOTIC PROPERTIES OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH SIMPLE CHARACTERISTICS [J].
AGMON, S ;
HORMANDER, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :1-38
[6]  
Besicovitch A. S., 1947, P CAMBRIDGE PHILOS S, V43, P590
[7]  
BESICOVITCH AS, 1946, P CAMB PHILOS SOC, V42, P1
[8]   A GENERAL FORM OF THE COVERING PRINCIPLE AND RELATIVE DIFFERENTIATION OF ADDITIVE FUNCTIONS [J].
BESICOVITCH, AS .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1945, 41 (02) :103-110
[9]  
Besicovitch AS., 1954, ALMOST PERIODIC FUNC
[10]  
Davies R. O., 1952, INDAG MATH, V14, P488