CHARACTERIZATION OF TPM1 DISRUPTED YEAST-CELLS INDICATES AN INVOLVEMENT OF TROPOMYOSIN IN DIRECTED VESICULAR TRANSPORT

被引:142
作者
LIU, HP [1 ]
BRETSCHER, A [1 ]
机构
[1] CORNELL UNIV, BIOCHEM MOLEC & CELL BIOL SECT, ITHACA, NY 14853 USA
关键词
D O I
10.1083/jcb.118.2.285
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Disruption of the yeast tropomyosin gene TPM1 results in the apparent loss of actin cables from the cytoskeleton (Liu, H., and A. Bretscher. 1989. Cell. 57:233-242). Here we show that TPM1 disrupted cells grow slowly, show heterogeneity in cell size, have delocalized deposition of chitin, and mate poorly because of defects in both shmooing and cell fusion. The transit time of alpha-factor induced a-agglutinin secretion to the cell surface is longer than in isogenic wild-type strains, and some of the protein is mislocalized. Many of the TPM1-deleted cells contain abundant vesicles, similar in morphology to late secretory vesicles, but without an abnormal accumulation of intermediates in the delivery of either carboxypeptidase Y to the vacuole or invertase to the cell surface. Combinations of the TPM1 disruption with sec13 or sec18 mutations, which affect early steps in the secretory pathway, block vesicle accumulation, while combinations with sec1,sec4 or sec6 mutations, which affect a late step in the secretory pathway, have no effect on the vesicle accumulation. The phenotype of the TPM1 disrupted cells is very similar to that of a conditional mutation in the MYO2 gene, which encodes a myosin-like protein (Johnston, G. C., J. A. Prendergast, and R. A. Singer. 1991. J. Cell Biol. 113:539-551). The myo2-66 conditional mutation shows synthetic lethality with the TPM1 disruption, indicating that the MYO2 and TPM1 gene products may be involved in the same, or parallel function. We conclude that tropomyosin, and by inference actin cables, may facilitate directed vesicular transport of components to the correct location on the cell surface.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 55 条
[1]   A YEAST ACTIN-BINDING PROTEIN IS ENCODED BY SAC6, A GENE FOUND BY SUPPRESSION OF AN ACTIN MUTATION [J].
ADAMS, AEM ;
BOTSTEIN, D ;
DRUBIN, DG .
SCIENCE, 1989, 243 (4888) :231-233
[2]  
ADAMS AEM, 1989, GENETICS, V121, P675
[3]   REQUIREMENT OF YEAST FIMBRIN FOR ACTIN ORGANIZATION AND MORPHOGENESIS INVIVO [J].
ADAMS, AEM ;
BOTSTEIN, D ;
DRUBIN, DG .
NATURE, 1991, 354 (6352) :404-408
[4]   RELATIONSHIP OF ACTIN AND TUBULIN DISTRIBUTION TO BUD GROWTH IN WILD-TYPE AND MORPHOGENETIC-MUTANT SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1984, 98 (03) :934-945
[5]   CDC42 AND CDC43, 2 ADDITIONAL GENES INVOLVED IN BUDDING AND THE ESTABLISHMENT OF CELL POLARITY IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
JOHNSON, DI ;
LONGNECKER, RM ;
SLOAT, BF ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1990, 111 (01) :131-142
[6]   DISRUPTION OF THE ACTIN CYTOSKELETON IN YEAST CAPPING PROTEIN MUTANTS [J].
AMATRUDA, JF ;
CANNON, JF ;
TATCHELL, K ;
HUG, C ;
COOPER, JA .
NATURE, 1990, 344 (6264) :352-354
[7]   AN ESSENTIAL ROLE FOR A PHOSPHOLIPID TRANSFER PROTEIN IN YEAST GOLGI FUNCTION [J].
BANKAITIS, VA ;
AITKEN, JR ;
CLEVES, AE ;
DOWHAN, W .
NATURE, 1990, 347 (6293) :561-562
[8]   The cytoskeleton of Saccharomyces cerevisiae [J].
Barnes, G. ;
Drubin, D. G. ;
Stearns, T. .
CURRENT OPINION IN CELL BIOLOGY, 1990, 2 (01) :109-115
[9]   USE OF A SCREEN FOR SYNTHETIC LETHAL AND MULTICOPY SUPPRESSEE MUTANTS TO IDENTIFY 2 NEW GENES INVOLVED IN MORPHOGENESIS IN SACCHAROMYCES-CEREVISIAE [J].
BENDER, A ;
PRINGLE, JR .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (03) :1295-1305
[10]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154