LINEARIZED INVERSION OF MULTIOFFSET SEISMIC-REFLECTION DATA IN THE OMEGA-K DOMAIN - DEPTH-DEPENDENT REFERENCE MEDIUM

被引:19
作者
IKELLE, LT [1 ]
DIET, JP [1 ]
TARANTOLA, A [1 ]
机构
[1] CO GEN GEOPHYS,F-91341 MASSEY,FRANCE
关键词
DATA PROCESSING - Data Reduction and Analysis - MATHEMATICAL TRANSFORMATIONS - Fourier Transforms - SEISMIC WAVES - Velocity;
D O I
10.1190/1.1442399
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The computation of synthetic seismograms can be linearized with respect to a reference medium that is close to the actual medium. Using a least-squares formulation, the inverse problem can then be set up as a problem of quadratic optimization. The inverse problem is greatly simplified if the reference medium is symmetric. For a homogeneous reference medium, a rigorous and economic solution can be obtained by Fourier transforming all spatial variables. However, the assumption of a homogeneous reference medium is generally not realistic. In some situations, the reference medium can be depth-dependent. It can then be shown that by Fourier transforming time and all spatial variables except depth, the inverse problem also has an elegant and economic solution.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 25 条
[1]  
ALTERMAN Z, 1968, B SEISMOL SOC AM, V58, P367
[2]   MULTIDIMENSIONAL LINEARIZED INVERSION AND SEISMIC MIGRATION [J].
BERKHOUT, AJ .
GEOPHYSICS, 1984, 49 (11) :1881-1895
[4]   AN EXTENSION OF THE BORN INVERSION METHOD TO A DEPTH DEPENDENT REFERENCE PROFILE [J].
BLEISTEIN, N ;
GRAY, SH .
GEOPHYSICAL PROSPECTING, 1985, 33 (07) :999-1022
[5]   A BORN-WKBJ INVERSION METHOD FOR ACOUSTIC REFLECTION DATA [J].
CLAYTON, RW ;
STOLT, RH .
GEOPHYSICS, 1981, 46 (11) :1559-1567
[6]   VELOCITY INVERSION PROCEDURE FOR ACOUSTIC-WAVES [J].
COHEN, JK ;
BLEISTEIN, N .
GEOPHYSICS, 1979, 44 (06) :1077-1087
[7]   VELOCITY INVERSION USING A STRATIFIED REFERENCE [J].
COHEN, JK ;
HAGIN, FG .
GEOPHYSICS, 1985, 50 (11) :1689-1700
[8]  
Dix C. H., 1955, GEOPHYSICS, V20, P68, DOI DOI 10.1190/1.1438126
[9]  
Ewing W.M., 1957, GFF, DOI DOI 10.1080/11035895809447214
[10]  
FOSTER DJ, 1986, UNPUB INVERSE PROBLE