GENERALIZED SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS WITH DISTRIBUTIONS AS INITIAL CONDITIONS

被引:19
作者
COLOMBEAU, JF
LANGLAIS, M
机构
[1] UNIV BORDEAUX 1,UER MATH & INFORMAT,F-33405 TALENCE,FRANCE
[2] UNIV BORDEAUX,INST SCI HUMAINE APPL,F-33000 BORDEAUX,FRANCE
关键词
D O I
10.1016/0022-247X(90)90440-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear parabolic equation ut-Δu + u3 = 0 in Q = Ω×]0, T[ (T > 0, Ω open set in Rd, d = 1, 2, ...) with the boundary condition u(x, t) = 0 on ∂Ω × ]0, T[ and the initial condition u(x, 0) = δ(x) in Ω, where δ is the Dirac mass at the origin of R. It is known that this problem has no weak solution in any known classical sense (within the distribution theory). Using a theory of generalized functions we obtain existence, uniqueness, and consistence results, which describe mathematically the behaviour of the solutions uε, obtained with smooth initial conditions uε(x, 0) = δε(x), δε ∈D(Ω), and δε → δ when ε → 0. © 1990.
引用
收藏
页码:186 / 196
页数:11
相关论文
共 13 条
[1]  
BARAS P, IN PRESS APPL ANAL
[2]   WHITNEY EXTENSION THEOREM FOR GENERALIZED-FUNCTIONS [J].
BIAGIONI, HA ;
COLOMBEAU, JF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :574-583
[3]  
BIAGIONI HA, 1988, INTRO NONLINEAR THEO
[4]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[5]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[6]  
Colombeau J. F., 1985, ELEMENTARY INTRO NEW
[7]  
COLOMBEAU JF, 1986, CR ACAD SCI I-MATH, V302, P379
[8]   MULTIPLICATIONS OF DISTRIBUTIONS IN ELASTICITY AND HYDRODYNAMICS [J].
COLOMBEAU, JF ;
LEROUX, AY .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (02) :315-319
[9]  
COLOMBEAU JF, 1989, IN PRESS J MATH DEC
[10]  
Friedman A., 1983, PARTIAL DIFFERENTIAL