ERROR-ESTIMATES FOR FINITE-ELEMENT METHODS FOR A WIDE-ANGLE PARABOLIC EQUATION

被引:4
作者
AKRIVIS, GD
DOUGALIS, VA
KAMPANIS, NA
机构
[1] INST APPL & COMPUTAT MATH,FORTH,GR-71110 IRAKLION,GREECE
[2] NATL TECH UNIV,DEPT MATH,GR-15780 ZOGRAFOS,GREECE
[3] TECH UNIV CRETE,DEPT MATH,GR-73100 KHANIA,GREECE
关键词
D O I
10.1016/0168-9274(94)00046-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model initial- and boundary-value problem for the third-order wide-angle parabolic approximation of underwater acoustics with depth- and range-dependent coefficients. We discretize the problem in the depth variable by the standard Galerkin finite element method and prove optimal-order L2-error estimates for the ensuing continuous-in-range semidiscrete approximation. The associated ODE systems are then discretized in range, first by a second-order accurate Crank-Nicolson-type method, and then by the fourth-order, two-stage Gauss-Legendre, implicit Runge-Kutta scheme. We show that both these fully discrete methods are unconditionally stable and posses L2-error estimates of optimal rates.
引用
收藏
页码:81 / 100
页数:20
相关论文
共 20 条
[1]  
AGMON S, 1965, LECTURES ELLIPTIC BO
[2]  
Akrivis G. D., 1994, Journal of Computational Acoustics, V2, P99, DOI 10.1142/S0218396X94000087
[3]  
Akrivis G. D., 1990, Computational Acoustics. Proceedings of the 2nd IMACS Symposium, P17
[4]  
AKRIVIS GD, 1991, RAIRO-MATH MODEL NUM, V25, P643
[5]  
AKRIVIS GD, IN PRESS ERROR ESTIM
[6]  
AKRIVIS GD, 1993, COMPUTATIONAL ACOUST, V2, P209
[7]  
BONA JL, IN PRESS PHILOS T RO
[8]  
BOTSEAS G, 1983, NUSC TR6905
[9]  
Claerbout J. F., 1976, FUNDAMENTALS GEOPHYS