ASYMPTOTIC-BEHAVIOR OF BRANCHING-PROCESSES WITH INFINITE MEAN

被引:31
作者
SCHUH, HJ [1 ]
BARBOUR, AD [1 ]
机构
[1] UNIV CAMBRIDGE,CAMBRIDGE,ENGLAND
关键词
D O I
10.2307/1426697
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:681 / 723
页数:43
相关论文
共 15 条
[1]  
Athreya K, 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[2]   ALMOST SURE CONVERGENCE OF BRANCHING-PROCESSES [J].
COHN, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 38 (01) :73-81
[3]   GALTON-WATSON PROCESS WITH INFINITE MEAN [J].
DARLING, DA .
JOURNAL OF APPLIED PROBABILITY, 1970, 7 (02) :455-&
[4]  
Feller W, 1970, INTRO PROBABILITY TH, V2
[5]   RATES OF GROWTH OF GALTON-WATSON PROCESS IN VARYING ENVIRONMENT [J].
FOSTER, JH ;
GOETTGE, RT .
JOURNAL OF APPLIED PROBABILITY, 1976, 13 (01) :144-147
[7]  
Harris TE., 1963, THEORY BRANCHING PRO
[8]   EXTENSION OF A RESULT OF SENETA FOR SUPER-CRITICAL GALTON-WATSON PROCESS [J].
HEYDE, CC .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02) :739-&
[9]   NOTE ON SIMPLE BRANCHING-PROCESSES WITH INFINITE MEAN [J].
HUDSON, IL ;
SENETA, E .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) :836-842
[10]   SIMPLE BRANCHING PROCESS WITH INFINITE MEAN .1. [J].
SENETA, E .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) :206-212