TOURNAMENTS AND VANDERMONDES DETERMINANT

被引:19
作者
GESSEL, I
机构
关键词
D O I
10.1002/jgt.3190030315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that det |xii–1|n × n = Π1≤i<i≤n (Xj – Xi) by associating a tournament to each term in the expansion of the product. All terms cancel except those corresponding to transitive tournaments, and their sum of the determinant. Copyright © 1979 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:305 / 307
页数:3
相关论文
共 2 条
[1]  
Moon J. W., 1968, TOPICS TOURNAMENTS
[2]  
RYSER HJ, 1964, RECENT ADV MATRIX TH, P103