TOY MODEL FOR GRAVITATIONAL KINKS

被引:6
作者
DUNN, KA
HARRIOTT, TA
WILLIAMS, JG
机构
[1] MT ST VINCENT UNIV,DEPT MATH,HALIFAX B3M 2J6,NS,CANADA
[2] BRANDON UNIV,DEPT MATH & COMP SCI,BRANDON R7A 6A9,MANITOBA,CANADA
关键词
D O I
10.1063/1.529720
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The homotopy properties of gravity in 1 + 1 dimensions are shown to imply the existence of structures analogous to the Finkelstein-Misner kinks of general relativity. A formalism is developed for the construction of kink metrics and a number of simple kink solutions for the (1 + 1)-dimensional equations are presented-including an n-kink solution that is locally transformable to the usual de Sitter solution and a one-kink solution that is locally transformable to one of the standard FLRW solutions. The relationship between the kink count and the hypersurface decomposition of the space-time manifold is explained in detail.
引用
收藏
页码:1437 / 1444
页数:8
相关论文
共 51 条
[1]   CANONICAL QUANTIZATION OF 1+1 DIMENSIONAL GRAVITY [J].
BANKS, T ;
SUSSKIND, L .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (05) :475-496
[2]  
BONDI H, 1965, LECTURES GENERAL REL, V1, P406
[3]   BLACK-HOLES IN 2 SPACETIME DIMENSIONS [J].
BROWN, JD ;
HENNEAUX, M ;
TEITELBOIM, C .
PHYSICAL REVIEW D, 1986, 33 (02) :319-323
[4]  
Brown JD, 1988, LOWER DIMENSIONAL GR
[5]   STATIONARY SOLUTIONS IN 5-DIMENSIONAL GENERAL-RELATIVITY [J].
CLEMENT, G .
GENERAL RELATIVITY AND GRAVITATION, 1986, 18 (02) :137-160
[7]   AN ORTHOGONAL FORM OF THE SCHWARZSCHILD METRIC [J].
DUNN, K .
GENERAL RELATIVITY AND GRAVITATION, 1990, 22 (05) :507-509
[8]   DE-SITTER KINKS [J].
DUNN, KA ;
WILLIAMS, JG .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) :87-89
[9]   KINK NUMBER IN GENERAL-RELATIVITY [J].
DUNN, KA ;
HARRIOTT, TA ;
WILLIAMS, JG .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :476-479
[10]  
DUNN KA, 1992, IN PRESS PHYS LETT A