NUMBER OF PRIME IMPLICANTS

被引:55
作者
CHANDRA, AK
MARKOWSKY, G
机构
[1] Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
关键词
D O I
10.1016/0012-365X(78)90168-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that any Boolean expression in disjunctive normal form having k conjuncts, can have at most 2k prime implicants. However, there exist such expressions that have 2 k 2 prime implicants. It is also shown that any Boolean expression on n distinct propositional variables can have at most O( 3n n) prime implicants, and that there exist expressions with ω( 3n n prime implicants. © 1978.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 7 条
[1]  
Dunham B., 1959, J SYMBOLIC LOGIC, V24, P17
[2]  
Harrison M., 1965, INTRO SWITCHING AUTO
[3]  
KLEITMAN DJ, 1971, DISCRETE MATH, P47
[4]   DETECTION OF GROUP INVARIANCE OR TOTAL SYMMETRY OF A BOOLEAN FUNCTION [J].
MCCLUSKEY, EJ .
BELL SYSTEM TECHNICAL JOURNAL, 1956, 35 (06) :1445-1453
[5]  
Miller R., 1965, SWITCHING THEORY, V1
[6]  
Quine W.V., 1952, AM MATH MON, V59, P521, DOI 10.1080/00029890.1952.11988183
[7]  
VIKULIN AP, 1974, PROBLEMY KIBERNET, V28, P151