NON-COHEN-MACAULAY SYMBOLIC BLOW-UPS FOR SPACE MONOMIAL CURVES

被引:8
作者
MORIMOTO, M [1 ]
GOTO, S [1 ]
机构
[1] MEIJI UNIV,SCH SCI & TECHNOL,DEPT MATH,TAMA KU,KAWASAKI 214,JAPAN
关键词
D O I
10.2307/2159734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p = p(n1, n2, n3) denote the prime ideal in the formal power series ring A = k[[X, Y, Z]] over a field k defining the space monomial curve X = T(n)1 , Y = T(n)2 , and Z = T(n)3 with GCD(n1 , n2, n3) = 1 . Then the symbolic Rees algebra R(s)(p) = +n greater-than-or-equal-to 0 p(n) for p = p(n2 + 2n + 2, n2 + 2n + 1 , n2 + n + 1) is Noetherian but not Cohen-Macaulay if ch k = p > 0 and n = p(e) with e greater-than-or-equal-to 1 . The same is true for p = p(n2, n2 + 1, n2 + n + 1) if ch k = p > 0 and n = p(e) greater-than-or-equal-to 3.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 10 条