STRONG COUPLING IN THE LIOUVILLE THEORY - A HEURISTIC APPROACH

被引:4
作者
CATES, ME
机构
[1] Cavendish Laboratory, Cambridge, CB3 0HE, Madingley Road
关键词
D O I
10.1016/0370-2693(90)90796-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Liouville action F = [(25-d)/48pi]integral[1/2 (DELTA-phi)2 + lambda-e-phi]d2x, with proper-time cutoff-epsilon, is considered. It is suggested that for d > 1 (strong coupling) the appropriate control parameter is not lambda but mu = lambda-epsilon, and that a branched polymer critical point occurs at a strictly positive mu(c)(d). For mu < mu(c), the term in lambda may fail to control infinite nestings of conformal spikes corresponding to branching tubules, of cross section-epsilon, in real space. It is conjectured that the spacing between branch points becomes large as d --> 1+: if so, an expansion in d - 1 might be useful to access the branched polymer fixed point.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 38 条
[1]   THEORY OF STRINGS WITH BOUNDARIES - FLUCTUATIONS, TOPOLOGY AND QUANTUM GEOMETRY [J].
ALVAREZ, O .
NUCLEAR PHYSICS B, 1983, 216 (01) :125-184
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]  
[Anonymous], 1987, GAUGE FIELDS STRINGS
[4]  
[Anonymous], 1979, SCALING CONCEPTS POL
[5]  
BAILLIE CF, IN PRESS NUCL PHYS B
[6]   POSSIBLE TYPES OF CRITICAL-BEHAVIOR AND THE MEAN SIZE OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
PHYSICS LETTERS B, 1986, 174 (01) :87-93
[7]  
CATES M, 1988, EUROPHYS LETT, V8, P719
[8]   THE FRACTAL DIMENSION AND CONNECTIVITY OF RANDOM SURFACES [J].
CATES, ME .
PHYSICS LETTERS B, 1985, 161 (4-6) :363-367
[9]  
CATES ME, 1989, PHASE TRANSITIONS SO
[10]  
CATTERALL S, 1989, PHYS LETT B, V220, P332