DISPERSIVE PERTURBATIONS OF SOLITONS OF THE NONLINEAR SCHRODINGER-EQUATION

被引:250
作者
GORDON, JP
机构
[1] AT and T Bell Laboratories, Holmdel, NJ
关键词
D O I
10.1364/JOSAB.9.000091
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A useful analysis of dispersive (radiative) perturbations of solitons of the nonlinear Schrodinger equation is developed. With reference to the propagation of optical solitons in glass fibers, the analysis is used to treat the collision of a low-intensity wave packet with a soliton, the radiation field created by the local perturbation of a soliton, and finally that created by a spatially periodic perturbation of the parameters of the fiber, or equivalently by a periodic variation in gain and loss that averages to zero. Perturbations whose wavelength is short compared with the soliton period produce exponentially small radiation fields as a result of the need for phase matching.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 10 条
[1]   RANDOM-WALK OF COHERENTLY AMPLIFIED SOLITONS IN OPTICAL FIBER TRANSMISSION [J].
GORDON, JP ;
HAUS, HA .
OPTICS LETTERS, 1986, 11 (10) :665-667
[2]   GUIDING-CENTER SOLITON IN OPTICAL FIBERS [J].
HASEGAWA, A ;
KODAMA, Y .
OPTICS LETTERS, 1990, 15 (24) :1443-1445
[3]   GUIDING-CENTER SOLITON [J].
HASEGAWA, A ;
KODAMA, Y .
PHYSICAL REVIEW LETTERS, 1991, 66 (02) :161-164
[4]   A PERTURBATIONAL APPROACH TO THE 2-SOLITON SYSTEMS [J].
KARPMAN, VI ;
SOLOVEV, VV .
PHYSICA D, 1981, 3 (03) :487-502
[5]  
KARPMAN VI, 1978, ZH EKSP TEOR FIZ, V46, P281
[6]   SOLITONS AS PARTICLES, OSCILLATORS, AND IN SLOWLY CHANGING MEDIA - SINGULAR PERTURBATION-THEORY [J].
KAUP, DJ ;
NEWELL, AC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 361 (1707) :413-446
[7]   SOLITON PROPAGATION IN LONG FIBERS WITH PERIODICALLY COMPENSATED LOSS [J].
MOLLENAUER, LF ;
GORDON, JP ;
ISLAM, MN .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (01) :157-173
[8]  
MOLLENAUER LF, 1991, IEEE J LIGHTWAVE TEC, V9, P362
[9]  
Satsuma J., 1974, Progress of Theoretical Physics Supplement, P284, DOI 10.1143/PTPS.55.284
[10]  
ZAHKAROV VE, 1972, ZH EKSP TEOR FIZ+, V34, P62