CURIOSITIES OF ARITHMETIC GASES

被引:17
作者
BAKAS, I [1 ]
BOWICK, MJ [1 ]
机构
[1] SYRACUSE UNIV,DEPT PHYS,SYRACUSE,NY 13244
关键词
SUPERSYMMETRY;
D O I
10.1063/1.529511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Statistical mechanical systems with an exponential density of states are considered. The arithmetic analog of parafermions of arbitrary order is constructed and a formula for boson-parafermion equivalence is obtained using properties of the Riemann zeta function. Interactions (nontrivial mixing) among arithmetic gases using the concept of twisted convolutions are also introduced. Examples of exactly solvable models are discussed in detail.
引用
收藏
页码:1881 / 1884
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1990, GRADUATE TEXTS MATH
[3]  
DYSON FJ, 1984, SYMMETRIES PARTICLE
[4]  
Godel K., 1931, Monatsh. f. Mathematik und Physik, V38, P173, DOI [10.1007/BF01700692, DOI 10.1007/BF01700692]
[5]  
HAGEDORN R, 1965, NUOVO CIMENTO, V3, P147
[6]   ON THE STATISTICS OF PRIMES [J].
JULIA, B .
JOURNAL DE PHYSIQUE, 1989, 50 (12) :1371-1375
[7]  
Julia B, 1990, P PHYSICS, V47, P276
[8]  
Mackey G.W., 1978, Unitary Group Representations in Physics, Probability, and Number Theory
[9]  
McCarthy PJ., 1986, Introduction to arithmetical functions
[10]  
NAGEL E, 1958, GODELS PROOF