OPERATOR ORDERING IN STOCHASTIC HAMILTONIAN AND PATH INTEGRAL FORMALISM OF STOCHASTIC QUANTIZATION

被引:8
作者
KOMOIKE, N
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1991年 / 86卷 / 02期
关键词
D O I
10.1143/PTP.86.575
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several authors have derived different path integral formalisms of stochastic quantization from Langevin equation. We show that the differences originate from those of the operator ordering in stochastic Hamiltonian and path integral formalisms of stochastic quantization are valid only under special choices for the value of theta(0).
引用
收藏
页码:575 / 579
页数:5
相关论文
共 11 条
[1]   A NEW STRONG-COUPLING EXPANSION FOR QUANTUM-FIELD THEORY BASED ON THE LANGEVIN EQUATION [J].
BENDER, CM ;
COOPER, F ;
FREEDMAN, B .
NUCLEAR PHYSICS B, 1983, 219 (01) :61-80
[2]   FUNCTIONAL-INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION - SCALAR THEORY [J].
GOZZI, E .
PHYSICAL REVIEW D, 1983, 28 (08) :1922-1930
[3]   DERIVATION OF A GENERALIZED STOCHASTIC PATH-INTEGRAL FORMULATION BASED ON ITO CALCULUS [J].
KAWARA, H ;
NAMIKI, M ;
OKAMOTO, H ;
TANAKA, S .
PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (04) :749-766
[4]  
MOCHIZUKI R, 1990, CHIBAEP39 CHIB U PRE
[5]   ONE-TIME CHARACTERISTIC FUNCTIONAL IN THE STOCHASTIC QUANTIZATION [J].
NAKANO, Y .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :361-365
[6]   SYMMETRIES IN STOCHASTIC QUANTIZATION AND ITO-STRATONOVICH RELATED INTERPRETATION [J].
NAKAZATO, H ;
OKANO, K ;
SCHULKE, L ;
YAMANAKA, Y .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :611-631
[7]  
NAKAZATO H, 1989, 3RD P INT C PATH INT, P460
[8]   STOCHASTIC QUANTIZATION METHOD IN OPERATOR-FORMALISM [J].
NAMIKI, M ;
YAMANAKA, Y .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (06) :1764-1793
[9]  
PARISI G, 1981, SCI SINICA, V24, P483
[10]  
SAKITA B, 1985, WORLD SCI LECTURE NO, V1