THERMODYNAMICS OF SQUEEZED STATES FOR THE KANAI-CALDIROLA HAMILTONIAN

被引:17
作者
ALIAGA, J
CRESPO, G
PROTO, AN
机构
[1] Laboratorio de Física, Comisión Nacional de Investigaciones Espaciales, 1638 Vicente López
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 07期
关键词
D O I
10.1103/PhysRevA.42.4325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the maximum-entropy approach, we analyze the appearance of coherent and squeezed states for the Kanai-Caldirola Hamiltonian, making it possible to extend the analysis easily to the so-called generalized harmonic oscillator and a sort of two-photon Hamiltonian, for both the zero and nonzero temperature cases. A connection between the possibility of obtaining squeezing and the relevant operators included in the density matrix is shown. Finally, a comparison with pertinent previous results in the literature is also presented. © 1990 The American Physical Society.
引用
收藏
页码:4325 / 4335
页数:11
相关论文
共 32 条
[1]   CANONICAL TREATMENT OF HARMONIC-OSCILLATOR WITH VARIABLE MASS [J].
ABDALLA, MS .
PHYSICAL REVIEW A, 1986, 33 (05) :2870-2876
[2]   CONNECTION BETWEEN MAXIMAL ENTROPY AND SCATTERING THEORETIC ANALYSES OF COLLISION PROCESSES [J].
ALHASSID, Y ;
LEVINE, RD .
PHYSICAL REVIEW A, 1978, 18 (01) :89-116
[3]   ENTROPY AND CHEMICAL CHANGE .3. MAXIMAL ENTROPY (SUBJECT TO CONSTRAINTS) PROCEDURE AS A DYNAMICAL THEORY [J].
ALHASSID, Y ;
LEVINE, RD .
JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (10) :4321-4339
[4]   TEMPORAL EVOLUTION IN AN EFFECTIVE HILBERT SUBSPACE [J].
ALIAGA, J ;
NEGRI, M ;
OTERO, D ;
PLASTINO, A ;
PROTO, AN .
PHYSICAL REVIEW A, 1987, 36 (07) :3427-3440
[5]   QUANTUM THERMODYNAMICS AND INFORMATION-THEORY [J].
ALIAGA, J ;
OTERO, D ;
PLASTINO, A ;
PROTO, AN .
PHYSICAL REVIEW A, 1988, 38 (02) :918-929
[6]   RELEVANT OPERATORS AND NON-ZERO TEMPERATURE SQUEEZED STATES [J].
ALIAGA, J ;
PROTO, AN .
PHYSICS LETTERS A, 1989, 142 (2-3) :63-67
[7]   NONZERO-TEMPERATURE COHERENT AND SQUEEZED STATES FOR THE HARMONIC-OSCILLATOR - THE TIME-DEPENDENT FREQUENCY CASE [J].
ALIAGA, J ;
CRESPO, G ;
PROTO, AN .
PHYSICAL REVIEW A, 1990, 42 (01) :618-626
[8]  
BONDURANT RS, 1984, PHYS REV D, V30, P2548, DOI 10.1103/PhysRevD.30.2548
[9]   STATISTICAL-MECHANICS OF QUANTUM ONE-DIMENSIONAL DAMPED HARMONIC-OSCILLATOR [J].
BORGES, ENM ;
BORGES, ON ;
RIBEIRO, LAA .
CANADIAN JOURNAL OF PHYSICS, 1985, 63 (05) :600-604
[10]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708