LIGHT AND OXYGEN REGULATION OF THE SYNTHESIS OF BACTERIOCHLOROPHYLLS-A AND BACTERIOCHLOROPHYLLS-C IN CHLOROFLEXUS-AURANTIACUS

被引:29
作者
OELZE, J
机构
关键词
D O I
10.1128/JB.174.15.5021-5026.1992
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Control of the synthesis of bacteriochlorophylls (Bchls) a and c by light and oxygen was studied in Chloroflexus aurantiacus grown in batch or chemostat culture with serine as the growth-limiting substrate. For comparison, inhibition by gabaculine of the formation of selected tetrapyrroles was studied. The inhibitory effect of gabaculine decreased in the following order of tetrapyrrole formation: coproporphyrin > Bchl c > Bchl a. Not only did addition of 5-aminolevulinate (ALA) reverse the inhibition by gabaculine, it also caused an increase in Bchl c content when the cultures grew at high concentrations of ALA. Inhibition of Bchl a, Bchl c, and coproporphyrin formation by oxygen was similar to inhibition by gabaculine. Addition of ALA to aerated cultures led to significant accumulation of coproporphyrin. These results suggest that oxygen inhibits tetrapyrrole formation at a site before ALA formation. Control by light was studied with chemostat cultures transferred from 5 klx to 25 klx. This resulted in only a transient increase of the protein level of the culture, while specific contents of Bchls c and a and the ratio Bchl c/Bchl a decreased to lower steady states. However, the specific content of coproporphyrin increased. Addition of ALA to chemostat cultures adapted to 50 klx increased specific coproporphyrin and Bchl c contents by factors of about 20 and 4, respectively, while the specific Bchl a content was only slightly increased and protein levels were unaffected. Increasing the serine concentration caused an initial increase in the specific Bchl c content, which returned to the original value as soon as the protein content had attained its maximal level. These results suggest that light does not control ALA formation as strictly as oxygen and that competition of biomass formation and tetrapyrrole synthesis for common precursors may be influenced by light.
引用
收藏
页码:5021 / 5026
页数:6
相关论文
共 28 条
[1]   DIFFERENCES IN THE CONTROL OF BACTERIOCHLOROPHYLL FORMATION BY LIGHT AND OXYGEN [J].
ARNHEIM, K ;
OELZE, J .
ARCHIVES OF MICROBIOLOGY, 1983, 135 (04) :299-304
[2]   DISTRIBUTION OF DELTA-AMINOLEVULINIC-ACID BIOSYNTHETIC PATHWAYS AMONG PHOTOTROPHIC BACTERIAL GROUPS [J].
AVISSAR, YJ ;
ORMEROD, JG ;
BEALE, SI .
ARCHIVES OF MICROBIOLOGY, 1989, 151 (06) :513-519
[3]   ANTENNA ORGANIZATION AND EVIDENCE FOR THE FUNCTION OF A NEW ANTENNA PIGMENT SPECIES IN THE GREEN PHOTOSYNTHETIC BACTERIUM CHLOROFLEXUS-AURANTIACUS [J].
BETTI, JA ;
BLANKENSHIP, RE ;
NATARAJAN, LV ;
DICKINSON, LC ;
FULLER, RC .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 680 (02) :194-201
[4]   THERMOPHILIC BLUE-GREEN ALGAE AND THERMAL ENVIRONMENT [J].
CASTENHOLZ, RW .
BACTERIOLOGICAL REVIEWS, 1969, 33 (04) :476-+
[5]  
Clayton R.K., 1966, PHOTOCHEM PHOTOBIOL, V5, P669, DOI [10.1111/j.1751-1097.1966.tb05813.x, DOI 10.1111/J.1751-1097.1966.TB05813.X]
[6]   ISOLATION AND CHARACTERIZATION OF CYTOPLASMIC MEMBRANES AND CHLOROSOMES FROM THE GREEN BACTERIUM CHLOROFLEXUS-AURANTIACUS [J].
FEICK, RG ;
FITZPATRICK, M ;
FULLER, RC .
JOURNAL OF BACTERIOLOGY, 1982, 150 (02) :905-915
[7]   OXYGEN REGULATION OF DEVELOPMENT OF THE PHOTOSYNTHETIC MEMBRANE SYSTEM IN CHLOROFLEXUS-AURANTIACUS [J].
FOSTER, JM ;
REDLINGER, TE ;
BLANKENSHIP, RE ;
FULLER, RC .
JOURNAL OF BACTERIOLOGY, 1986, 167 (02) :655-659
[8]  
FULLER RC, 1985, MOL BIOL PHOTOSYNTHE, P155
[9]   QUANTITATIVE RELATIONSHIP BETWEEN BACTERIOCHLOROPHYLL CONTENT, CYTOPLASMIC MEMBRANE-STRUCTURE AND CHLOROSOME SIZE IN CHLOROFLEXUS-AURANTIACUS [J].
GOLECKI, JR ;
OELZE, J .
ARCHIVES OF MICROBIOLOGY, 1987, 148 (03) :236-241
[10]  
GRIEBENOW K, 1990, Z NATURFORSCH C, V45, P823