RETRIEVAL OF SNOW PARAMETERS BY ITERATIVE INVERSION OF A NEURAL-NETWORK

被引:59
作者
DAVIS, DT [1 ]
CHEN, ZX [1 ]
HWANG, JN [1 ]
CHANG, ATC [1 ]
TSANG, L [1 ]
机构
[1] NASA,GODDARD SPACE FLIGHT CTR,HYDROL SCI BRANCH,GREENBELT,MD 20771
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1993年 / 31卷 / 04期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1109/36.239907
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The inversion of snow parameters from passive microwave remote sensing measurements is performed based on an iterative inversion of a neural network (NN) trained with a dense media multiple scattering model. Inversion of four parameters is performed from five brightness temperatures. The four parameters are: mean-grain size of ice particles in snow, snow density, snow temperature, and snow depth. Iterative inversion of a data driven forward NN model is justified on a theoretical and methodological basis. We perform an error analysis, comparing iterative inversion of a forward model with the use of an explicit inverse for the retrieval of independent snow parameters from their corresponding measurements. The NN iterative inversion algorithm is further illustrated by reconstructing a synthetic terrain of snow parameters from their corresponding measurements, inverting all four parameters simultaneously. The reconstructed parameter contours are in good agreement with the original synthetic parameter contours.
引用
收藏
页码:842 / 852
页数:11
相关论文
共 21 条