FINITE SUBGROUPS OF THE GENERALIZED LORENTZ-GROUPS O(P,Q)

被引:3
作者
PATERA, J [1 ]
SAINTAUBIN, Y [1 ]
ZASSENHAUS, H [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
D O I
10.1063/1.524432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An algorithm is developed which permits us to construct all the finite subgroups of the generalized Lorentz groups O(p,q) up to an O(p,q) conjugation. The application of this algorithm to the Lorentz group O(3,1) is outlined, and the full list of finite subgroups compiled. © 1980 American Institute of Physics.
引用
收藏
页码:234 / 239
页数:6
相关论文
共 10 条
[1]  
BAGNERA G, 1901, REND CIRC MATEM PALE, V15, P21
[2]   POLYNOMIAL TENSORS FOR DOUBLE POINT GROUPS [J].
DESMIER, PE ;
SHARP, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (01) :74-82
[3]   INTERNAL STRUCTURE OF SPINNING PARTICLES [J].
FINKELSTEIN, D .
PHYSICAL REVIEW, 1955, 100 (03) :924-931
[4]  
GOURSAT EM, 1883, ANN SCI ECOLE NORM S, V6, P2
[5]  
KOPTSIK V, 1966, SHUBNIKOVS GROUPS
[6]   POLYNOMIAL IRREDUCIBLE TENSORS FOR POINT GROUPS [J].
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) :2362-2376
[7]   NEW FORMULA FOR SPINOR NORM [J].
PERROUD, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (06) :1265-1266
[8]  
Shubnikov A., 1974, SYMMETRY SCI ART
[9]  
Winternitz P, 1965, SOV J NUCL PHYS+, V1, P636
[10]  
WINTERNITZ P, 1971, EXPANSIONS RELATIV 3