A NEURAL NETWORK TO COMPUTE THE HUTCHINSON METRIC IN FRACTAL IMAGE-PROCESSING

被引:11
作者
STARK, J
机构
[1] Long Range Research Laboratory, GEC-Marconi Ltd., Hirst Research Centre, Middlesex, East Lane. Wembley
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1991年 / 2卷 / 01期
关键词
D O I
10.1109/72.80303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. We describe a neural network which can quickly calculate this metric. By combining this with the architecture described in [12] for implementing the Markov operator of an iterated function system (IFS) on a neural network, we give a fast method for determining the distance between a target image and the invariant measure of a trial IFS. This has obvious applications to Barnsley's fractal image compression scheme [3]-[6].
引用
收藏
页码:156 / 158
页数:3
相关论文
共 14 条
[1]  
Barnsley M. F., 1993, FRACTALS EVERYWHERE, Vsecond
[2]  
BARNSLEY MF, 1988, BYTE, V13, P215
[3]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[4]  
BARNSLEY MF, 1988, COMPUTER GRAPHICS, V22
[5]  
Demko S., 1985, Computer Graphics, V19, P271, DOI 10.1145/325165.325245
[6]  
Falconer KJ., 1985, GEOMETRY FRACTAL SET, DOI 10.1017/CBO9780511623738
[7]  
Halmos PR, 1974, MEASURE THEORY
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]  
Mandelbrot B. B, 1982, FRACTAL GEOMETRY NAT, V1, P170