EQUIPARTITION FOR QUANTUM SYSTEMS

被引:3
作者
MARTENS, R
VERBEURE, A
机构
[1] Instituut voor Theoretische Fysica, Universiteit Leuven, Leuven
关键词
D O I
10.1007/BF00397215
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For KMS-States an inequality between the first and second moment of the time-auto-correlation function is derived and applied to Boson systems to prove that the classical equipartition theorem is strictly non valid. © 1979 D. Reidel Publishing Company.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 8 条
[1]   EQUIVALENCE BETWEEN KMS-STATES AND EQUILIBRIUM STATES FOR CLASSICAL SYSTEMS [J].
AIZENMAN, M ;
GOLDSTEIN, S ;
GRUBER, C ;
LEBOWITZ, JL ;
MARTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :209-220
[2]   HOMOGENEOUS PERTURBED CLASSICAL STATES AND EQUILIBRIUM CONDITIONS [J].
DEMOEN, B ;
VERBEURE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (03) :191-200
[3]   CLASSICAL KMS BOUNDARY-CONDITION [J].
GALLAVOTTI, G ;
VERBOVEN, E .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, 28 (01) :274-286
[4]   QUASI-UNITARY ALGEBRAS ATTACHED TO TEMPERATURE STATES IN STATISTICAL MECHANICS . A COMMENT ON WORK OF HAAG HUGENHOLTZ AND WINNINK [J].
KASTLER, D ;
POOL, JCT ;
POULSEN, ET .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (03) :175-&
[6]   SMALLEST C]-ALGEBRA FOR CANONICAL COMMUTATIONS RELATIONS [J].
MANUCEAU, J ;
SIRUGUE, M ;
TESTARD, D ;
VERBEURE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 32 (03) :231-243
[7]  
RUELLE D, 1969, STATISTICAL MECHANIC
[8]  
TAKESAKI M, 1970, LECTURE NOTES MATH A, V28