ORDER PARAMETER EQUATIONS FOR PATTERNS

被引:240
作者
NEWELL, AC
PASSOT, T
LEGA, J
机构
[1] Arizona Ctr. for Math. Sciences, University of Arizona, Tucson
[2] Observatoire de Nice, 06304 Nice Cedex 4
[3] Institut Non Linéaire de Nice, 06108 Nice Cedex 02
关键词
AMPLITUDE EQUATIONS; CONVECTION; DEFECTS; PHASE TRANSITIONS; STABILITY;
D O I
10.1146/annurev.fl.25.010193.002151
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
[No abstract available]
引用
收藏
页码:399 / 453
页数:55
相关论文
共 129 条
[1]   EVOLUTION OF TURBULENCE FROM RAYLEIGH-BENARD INSTABILITY [J].
AHLERS, G ;
BEHRINGER, RP .
PHYSICAL REVIEW LETTERS, 1978, 40 (11) :712-716
[2]   TIME-DEPENDENCE OF FLOW PATTERNS NEAR THE CONVECTIVE THRESHOLD IN A CYLINDRICAL CONTAINER [J].
AHLERS, G ;
CANNELL, DS ;
STEINBERG, V .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1373-1376
[3]  
AHLERS G, 1982, J FLUID MECH, V125, P219
[4]   LONG-TIME SCALES IN TRAVELING-WAVE CONVECTION PATTERNS [J].
ANDERSON, KE ;
BEHRINGER, RP .
PHYSICS LETTERS A, 1990, 145 (6-7) :323-328
[5]   LOCALIZED TRAVELING-WAVE CONVECTION IN BINARY-FLUID MIXTURES [J].
BARTEN, W ;
LUCKE, M ;
KAMPS, M .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2621-2624
[6]   ON THE POSSIBILITY OF SOFT AND HARD TURBULENCE IN THE COMPLEX GINZBURG-LANDAU EQUATION [J].
BARTUCCELLI, M ;
CONSTANTIN, P ;
DOERING, CR ;
GIBBON, JD ;
GISSELFALT, M .
PHYSICA D, 1990, 44 (03) :421-444
[7]   FORMATIONS OF SPATIAL PATTERNS AND HOLES IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
BEKKI, N ;
NOZAKI, K .
PHYSICS LETTERS A, 1985, 110 (03) :133-135
[8]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[9]  
BENNEY DJ, 1967, J MATH PHYS, V46, P113
[10]   SLOWLY VARYING FULLY NONLINEAR WAVETRAINS IN THE GINZBURG-LANDAU EQUATION [J].
BERNOFF, AJ .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 30 (03) :363-381