NEUROSTEROIDS, VIA SIGMA-RECEPTORS, MODULATE THE [H-3] NOREPINEPHRINE RELEASE EVOKED BY N-METHYL-D-ASPARTATE IN THE RAT HIPPOCAMPUS

被引:378
作者
MONNET, FP [1 ]
MAHE, V [1 ]
ROBEL, P [1 ]
BAULIEU, EE [1 ]
机构
[1] INSERM, U33, F-94276 LE KREMLIN BICETRE, FRANCE
关键词
D O I
10.1073/pnas.92.9.3774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
N-Methyl-D-aspartate (NMDA, 200 mu M) evokes the release of [H-3]norepinephrine ([H-3]NE) from preloaded hippocampal slices. This effect is potentiated by dehydroepiandrosterone sulfate (DHEA S), whereas it is inhibited by pregnenolone sulfate (PREG S) and the high-affinity sigma inverse agonist 1,3-di(2-tolyl)guanidine, at concentrations of greater than or equal to 100 nM. Neither 3 alpha-hydroxy-5 alpha-pregnan-20-one nor its sulfate ester modified NMDA-evoked [H-3] NE overflow. The a antagonists haloperidol and 1-[2-(3,4-dichlorophenyl)-ethyl]-4-methylpiperazine, although inactive by themselves, completely prevented the effects of DHEA S, PREG S, and 1,3-di(2-tolyl)guanidine on NMDA-evoked [3H]NE release. Progesterone (100 nM) mimicked the antagonistic effect of haloperidol and 1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine. These results indicate that the tested steroid sulfate esters differentially affected the MMDA response in vitro and suggest that DHEA S acts as a sigma agonist, that PREG S acts as a sigma inverse agonist, and that progesterone may act as a sigma antagonist. Pertussis toxin, which inactivates the G(i/o) types of guanine nucleotide-binding protein (G(i/o) protein) function, suppresses both effects of DHEA S and PREG S. Since sigma(1) but not sigma(2) receptors are coupled to G(i/o) proteins, the present results suggest that DHEA S and PREG S control the NMDA response via sigma(1) receptors.
引用
收藏
页码:3774 / 3778
页数:5
相关论文
共 52 条
[1]  
Walker J.M., Bowen W.D., Walker F.O., Matsumoto R.R., De Costa B.J., Rice K.C., Pharmacol. Rev., 42, pp. 355-402, (1990)
[2]  
Monnet F.P., Debonnel G., Junien J.L., De Montigny C., Eur. J. Pharmacol., 179, pp. 441-445, (1990)
[3]  
Monnet F.P., Blier P., Debonnel G., De Montigny C., Naunyn Schmiedebergs Arch. Pharmacol., 346, pp. 32-39, (1992)
[4]  
Monnet F.P., Debonnel G., De Montigny C., J. Pharmacol. Exp. Ther., 261, pp. 123-130, (1992)
[5]  
Monnet F.P., Debonnel G., De Montigny C., Br. J. Pharmacol., 112, pp. 709-715, (1994)
[6]  
Roman F.J., Pascaud X., Duffy O., Junien J.L., NMDA Receptors Related Agents: Biochemistry, Pharmacology, and Behavior, pp. 211-218, (1991)
[7]  
Iyengar S., Dilworth V.M., Mick S.J., Contreras P.C., Monahan J.B., Rao T.S., Wood P.L., Brain Res., 524, pp. 322-326, (1990)
[8]  
Iyengar S., Mick S., Dilworth V., Michel J., Rao T.S., Farah J.M., Wood P.L., Neuropharmacology, 29, pp. 299-303, (1990)
[9]  
Iyengar S., Wood P.L., Mick S.J., Dilworth V.M., Gray N.M., Farah J.M., Rao T.S., Contreras P.C., Neurophamiacology, 30, pp. 915-922, (1991)
[10]  
Rao T.S., Cler J.A., Emmett M.R., Mick S., Iyengar S., Wood P.L., Mol. Pharmacol., 37, pp. 978-982, (1990)