MULTILEVEL HIERARCHICAL PRECONDITIONERS FOR BOUNDARY-ELEMENT SYSTEMS

被引:15
作者
BARRA, LPS
COUTINHO, ALGA
TELLES, JCF
MANSUR, WJ
机构
[1] Department of Civil Engineering, COPPE/Federal University of Rio de Janeiro, 21945 Rio de Janeiro
关键词
BOUNDARY ELEMENT METHOD; GMRES; HIERARCHICAL PRECONDITIONER;
D O I
10.1016/0955-7997(93)90004-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on previous experiences with multi-level hierarchical preconditioners (MLHPs) for the solution of finite element equations, the present work extends the ideas to the boundary element technique. Since the system matrix is dense and non-symmetric, the MLHP are implemented within the generalized minimal residual (GMRES) algorithm.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 17 条
  • [1] THE HIERARCHICAL BASIS MULTIGRID METHOD
    BANK, RE
    DUPONT, TF
    YSERENTANT, H
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (04) : 427 - 458
  • [2] BANK RE, 1989, 2ND P INT S DOM DEC, P140
  • [3] ITERATIVE SOLUTION OF BEM EQUATIONS BY GMRES ALGORITHM
    BARRA, LPS
    COUTINHO, ALGA
    MANSUR, WJ
    TELLES, JCF
    [J]. COMPUTERS & STRUCTURES, 1992, 44 (06) : 1249 - 1253
  • [4] BARRA LPS, 1992, BEM 14, V1, P643
  • [5] MULTILEVEL MATRIX MULTIPLICATION AND FAST SOLUTION OF INTEGRAL-EQUATIONS
    BRANDT, A
    LUBRECHT, AA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (02) : 348 - 370
  • [6] Brebbia C.A., 1984, BOUNDARY ELEMENT TEC
  • [7] COUTINHO ALG, 1991, DEC ASME WINT ANN M
  • [8] Dongarra J. J., 1979, LINPACK USERS GUIDE
  • [9] Dongarra JJ, 1991, SOLVING LINEAR SYSTE
  • [10] ITERATIVE SOLUTION TECHNIQUES IN BOUNDARY ELEMENT ANALYSIS
    KANE, JH
    KEYES, DE
    PRASAD, KG
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (08) : 1511 - 1536