IMPROVING THE COUNTERPROPAGATION NETWORK PERFORMANCES

被引:1
作者
CHIUDERI, A [1 ]
机构
[1] UNIV FLORENCE,DEPT ELECTR ENGN,I-50139 FLORENCE,ITALY
关键词
D O I
10.1007/BF02312353
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the problem of how input data normalization can affect the performances of the Counterpropagation neural network. In the following, an example drawn from the landcover classification of remotely sensed images is presented and a solution, based on the Decorrelation Stretching technique, is proposed.
引用
收藏
页码:27 / 30
页数:4
相关论文
共 6 条
[1]  
BECHINI C, 1992, P IGARSS, V1, P395
[2]  
COPPO P, 1992, P IGARSS, V1, P489
[3]   COLOR ENHANCEMENT OF HIGHLY CORRELATED IMAGES .1. DECORRELATION AND HSI CONTRAST STRETCHES [J].
GILLESPIE, AR ;
KAHLE, AB ;
WALKER, RE .
REMOTE SENSING OF ENVIRONMENT, 1986, 20 (03) :209-235
[4]  
NIELSEN RH, 1987, APPL OPTICS, V26, P4979
[5]  
WASSERMAN PD, 1989, NEURAL COMPUTING
[6]  
WILKINSON GG, 1991, EURO COURS REM SENS, P71