FUNCTIONAL EXPRESSION OF P-GLYCOPROTEIN IN SACCHAROMYCES-CEREVISIAE CONFERS CELLULAR-RESISTANCE TO THE IMMUNOSUPPRESSIVE AND ANTIFUNGAL AGENT FK520

被引:58
作者
RAYMOND, M
RUETZ, S
THOMAS, DY
GROS, P
机构
[1] MCGILL UNIV, DEPT BIOCHEM, 3655 DRUMMOND, MONTREAL H3G 1Y6, QUEBEC, CANADA
[2] NATL RES COUNCIL CANADA, BIOTECHNOL RES INST, MONTREAL H4P 2R2, PQ, CANADA
[3] MCGILL UNIV, DEPT BIOL, MONTREAL H3A 1B1, QUEBEC, CANADA
关键词
D O I
10.1128/MCB.14.1.277
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have recently reported that expression in yeast cells of P-glycoprotein (P-gp) encoded by the mouse multidrug resistance mdr3 gene (Mdr3) can complement a null ste6 mutation (M. Raymond, P. Gros, M. Whiteway, and D. Y. Thomas, Science 256:232-234, 1992). Here we show that Mdr3 behaves as a fully functional drug transporter in this heterologous expression system. Photolabelling experiments indicate that Mdr3 synthesized in yeast cells binds the drug analog [I-125]iodoaryl azidoprazosin, this binding being competed for by vinblastine and tetraphenylphosphonium bromide, two known multidrug resistance drugs. Spheroplasts expressing wild-type Mdr3 (Ser-939) exhibit an ATP-dependent and verapamil-sensitive decreased accumulation of [H-3]vinblastine as compared with spheroplasts expressing a mutant form of Mdr3 with impaired transport activity (Phe-939). Expression of Mdr3 in yeast cells can confer resistance to growth inhibition by the antifungal and immunosuppressive agent FK520, suggesting that this compound is a substrate for P-gp in yeast cells. Replacement of Ser-939 in Mdr3 by a series of amino acid substitutions is shown to modulate both the level of cellular resistance to FK520 and the mating efficiency of yeast mdr3 transformants. The effects of these mutations on the function of Mdr3 in yeast cells are similar to those observed in mammalian cells with respect to drug resistance and transport, indicating that transport of a-factor and FK520 in yeast cells is mechanistically similar to drug transport in mammalian cells. The ability of P-gp to confer cellular resistance to FK520 in yeast cells establishes a dominant phenotype that can be assayed for the positive selection of intragenic revertants of P-gp inactive mutants, an important tool for the structure-function analysis of mammalian P-gp in yeast cells.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 58 条
[1]  
ARCECI RJ, 1992, BLOOD, V80, P1528
[2]  
BECK WT, 1990, B CANCER, V77, P1131
[3]   PHOTOAFFINITY SUBSTRATES FOR P-GLYCOPROTEIN [J].
BECK, WT ;
QIAN, XD .
BIOCHEMICAL PHARMACOLOGY, 1992, 43 (01) :89-93
[4]   FUNCTIONAL EXPRESSION OF MOUSE MDR1 IN ESCHERICHIA-COLI [J].
BIBI, E ;
GROS, P ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :9209-9213
[5]   ANTIFUNGAL PROPERTIES OF THE IMMUNOSUPPRESSANT FK-506 - IDENTIFICATION OF AN FK-506-RESPONSIVE YEAST GENE DISTINCT FROM FKB1 [J].
BRIZUELA, L ;
CHREBET, G ;
BOSTIAN, KA ;
PARENT, SA .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (09) :4616-4626
[6]   FUNCTIONAL-ANALYSIS OF CHIMERIC GENES OBTAINED BY EXCHANGING HOMOLOGOUS DOMAINS OF THE MOUSE MDR1 AND MDR2 GENES [J].
BUSCHMAN, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (02) :595-603
[7]  
BUSCHMAN E, 1992, J BIOL CHEM, V267, P18093
[8]   INTERNAL DUPLICATION AND HOMOLOGY WITH BACTERIAL TRANSPORT PROTEINS IN THE MDR1 (P-GLYCOPROTEIN) GENE FROM MULTIDRUG-RESISTANT HUMAN-CELLS [J].
CHEN, CJ ;
CHIN, JE ;
UEDA, K ;
CLARK, DP ;
PASTAN, I ;
GOTTESMAN, MM ;
RONINSON, IB .
CELL, 1986, 47 (03) :381-389
[9]   DRUG-RESISTANCE IN MULTIPLE-MYELOMA AND NON-HODGKINS LYMPHOMA - DETECTION OF P-GLYCOPROTEIN AND POTENTIAL CIRCUMVENTION BY ADDITION OF VERAPAMIL TO CHEMOTHERAPY [J].
DALTON, WS ;
GROGAN, TM ;
MELTZER, PS ;
SCHEPER, RJ ;
DURIE, BGM ;
TAYLOR, CW ;
MILLER, TP ;
SALMON, SE .
JOURNAL OF CLINICAL ONCOLOGY, 1989, 7 (04) :415-424
[10]   2 MEMBERS OF THE MOUSE MDR GENE FAMILY CONFER MULTIDRUG RESISTANCE WITH OVERLAPPING BUT DISTINCT DRUG SPECIFICITIES [J].
DEVAULT, A ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (04) :1652-1663