MULTIPLE CUTOFF WAVE-NUMBERS OF THE ABLATIVE RAYLEIGH-TAYLOR INSTABILITY

被引:9
作者
BETTI, R [1 ]
GONCHAROV, V [1 ]
MCCRORY, RL [1 ]
TURANO, E [1 ]
VERDON, CP [1 ]
机构
[1] UNIV ROCHESTER,DEPT MECH ENGN,ROCHESTER,NY 14623
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 05期
关键词
D O I
10.1103/PhysRevE.50.3968
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cutoff wave number of the incompressible ablative Rayleigh-Taylor instability is calculated using the physical optics approximation of the Wentzel-Kramers-Brillouin theory. It is found that a single value of the wave number k can correspond to multiple modes with different eigenfunctions and growth rates. In the -k plane the unstable spectrum is characterized by multiple branches with different cutoff wave numbers, and eigenfunctions with different number of zeros. The theory provides a formula for the cutoff wave number, valid in the regimes of interest for inertial confinement fusion capsules. © 1994 The American Physical Society.
引用
收藏
页码:3968 / 3972
页数:5
相关论文
共 9 条
[1]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[2]   SUPPRESSION OF THE RAYLEIGH-TAYLOR INSTABILITY BY CONVECTION IN ABLATIVELY ACCELERATED LASER TARGETS [J].
BUDKO, AB ;
LIBERMAN, MA .
PHYSICAL REVIEW LETTERS, 1992, 68 (02) :178-181
[3]   NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY [J].
GARDNER, JH ;
BODNER, SE ;
DAHLBURG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04) :1070-1074
[4]   ABLATIVE STABILIZATION IN THE INCOMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY [J].
KULL, HJ ;
ANISIMOV, SI .
PHYSICS OF FLUIDS, 1986, 29 (07) :2067-2075
[5]   INCOMPRESSIBLE DESCRIPTION OF RAYLEIGH-TAYLOR INSTABILITIES IN LASER-ABLATED PLASMAS [J].
KULL, HJ .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (01) :170-182
[6]   SIMPLE-MODEL FOR ABLATIVE STABILIZATION [J].
MIKAELIAN, KO .
PHYSICAL REVIEW A, 1992, 46 (10) :6621-6627
[7]  
RAYLEIGH, 1900, SCI PAPERS, V2, P200
[8]   SELF-CONSISTENT GROWTH-RATE OF THE RAYLEIGH-TAYLOR INSTABILITY IN AN ABLATIVELY ACCELERATING PLASMA [J].
TAKABE, H ;
MIMA, K ;
MONTIERTH, L ;
MORSE, RL .
PHYSICS OF FLUIDS, 1985, 28 (12) :3676-3681
[9]   NON-LINEAR EFFECTS OF MULTIFREQUENCY HYDRODYNAMIC INSTABILITIES ON ABLATIVELY ACCELERATED THIN SHELLS [J].
VERDON, CP ;
MCCRORY, RL ;
MORSE, RL ;
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1982, 25 (09) :1653-1674