Second-Variation Methods in Periodic Optimization

被引:27
作者
Bittanti, S. [1 ]
Locatelli, A. [1 ]
Maffezzoni, C. [1 ]
机构
[1] Polytech Milan, Inst Electrotech & Elect, Milan, Italy
关键词
Calculus of variations; control theory; Hamilton-Jacobi equation; periodic processes; Riccati equation;
D O I
10.1007/BF00933173
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The periodic optimization of continuous dynamical systems is considered in this paper. Sufficient conditions for the optimality of a control function are established first. Then, the problem of finding the perturbations to be given to the nominal optimal control in order to preserve optimality under small parameter variations is stated and solved. Finally, the existence of periodic solution of the Riccati-type equations which are involved in the above problems is discussed.
引用
收藏
页码:31 / 49
页数:19
相关论文
共 17 条
  • [1] BAILEY JE, 1971, J OPTIMIZATION THEOR, V7
  • [2] BERTELE U, 1972, IEEE T AUTOMATIC CON, V17
  • [3] BITTANTI S., 1973, IEEE T AUTOMATIC CON, V18
  • [4] FJELD M, 1969, AUTOMATICA, V5
  • [5] Gantmacher F.R., 1959, THEORY MATRICES
  • [6] Status of Periodic Optimization of Dynamical Systems
    Guardabassi, G.
    Locatelli, A.
    Rinaldi, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 14 (01) : 1 - 20
  • [7] Guardabassi G., 1971, RICERCHE AUTOMATICA, V2
  • [8] Halanay A., 1966, DIFF EQUAT+
  • [9] HORN FJM, 1968, J OPTIMIZATION THEOR, V2
  • [10] HORN FJM, 1967, I EC PROCESS DESIGN, V6