AN ALGORITHM FOR COMPUTING SHAPE-PRESERVING INTERPOLATING SPLINES OF ARBITRARY DEGREE

被引:26
作者
COSTANTINI, P [1 ]
机构
[1] UNIV FLORENCE,DIPARTIMENTO ENERGET,I-50121 FLORENCE,ITALY
关键词
COMPUTER PROGRAMMING - Algorithms - COMPUTER PROGRAMMING LANGUAGES - FORTRAN - COMPUTER PROGRAMS - SPLINES;
D O I
10.1016/0377-0427(88)90290-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe an algorithm for computing co-monotone and/or co-convex splines of degree m and deficiency m-k at the knots (0 less than k less than m minus k), which are interpolant or osculatory to a given set of data. The method is based upon some existence properties recently developed. Graphical examples and a listing of the FORTRAN code SPISP1 are given. This work is application to computer aided design.
引用
收藏
页码:89 / 136
页数:48
相关论文
共 27 条
[2]  
Butland J., 1980, P COMPUTER GRAPHICS, P409
[3]  
CHALMERS BL, 1979, JAHRESBER DTSCH MATH, V81, P49
[4]  
Costantini P., 1984, Calcolo, V21, P295, DOI 10.1007/BF02576168
[5]  
COSTANTINI P, 1986, MATH COMPUT, V46, P203, DOI 10.1090/S0025-5718-1986-0815841-7
[6]  
Costantini P., 1984, Calcolo, V21, P281, DOI 10.1007/BF02576538
[7]  
COSTANTINI P, 1984, B UMI, V6, P257
[8]  
De Boor C., 1978, PRACTICAL GUIDE SPLI, V27
[9]   PIECEWISE MONOTONE INTERPOLATION [J].
DEBOOR, C ;
SWARTZ, B .
JOURNAL OF APPROXIMATION THEORY, 1977, 21 (04) :411-416
[10]   MONOTONE PIECEWISE CUBIC INTERPOLATION [J].
FRITSCH, FN ;
CARLSON, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :238-246