DIFFERENCE SCHEMES OR ELEMENT SCHEMES

被引:7
作者
CUSHMAN, JH
机构
[1] Department of Agronomy, Purdue University, Lafayette, Indiana
关键词
D O I
10.1002/nme.1620141106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Several examples are presented to illustrate how standard finite differnce schemes for the wave eqation (e.g. Lax–Wendroff, Leafrog, etc.) can be developed from finite element analysis. The development of the diffrence schemes from the element schemes is made possible by using Galerkin's method on both the spacial and temporal dimensions. Copyright © 1979 John Wiley & Sons, Ltd
引用
收藏
页码:1643 / 1651
页数:9
相关论文
共 10 条
[1]   FINITE ELEMENTS IN TIME AND SPACE [J].
ARGYRIS, JH ;
SCHARPF, DW .
NUCLEAR ENGINEERING AND DESIGN, 1969, 10 (04) :456-&
[2]  
BRUCH JC, 1973, INT J NUMER METH ENG, V6, P577
[3]  
BRUCH JC, 1973, MATH FINITE ELEMENTS, P201
[4]   2-DIMENSIONAL LINEARIZED VIEW OF ONE-DIMENSIONAL UNSATURATED-SATURATED FLOW [J].
CUSHMAN, J ;
KIRKHAM, D .
WATER RESOURCES RESEARCH, 1978, 14 (02) :319-323
[5]   FINITE-ELEMENT ANALYSIS OF TIME-DEPENDENT PHENOMENA [J].
FRIED, I .
AIAA JOURNAL, 1969, 7 (06) :1170-&
[6]   GALERKIN APPROXIMATION OF TIME DERIVATIVE IN FINITE-ELEMENT ANALYSIS OF GROUNDWATER FLOW [J].
GRAY, WG ;
PINDER, GF .
WATER RESOURCES RESEARCH, 1974, 10 (04) :821-828
[7]  
Oden J. T., 1969, International Journal for Numerical Methods in Engineering, V1, P247, DOI 10.1002/nme.1620010304
[8]  
ODEN JT, 1976, PURE APPLIED MATH
[9]  
Zienkiewicz O.C., 1970, INT J NUMER METH ENG, V2, P61
[10]  
ZIENKIEWICZ OC, 1977, FINITE ELEMENT METHO, pCH21