ON THE EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR COMPETING SPECIES MODELS WITH DIFFUSION

被引:76
作者
DANCER, EN
机构
关键词
COMPETING SPECIES SYSTEMS; STRICTLY POSITIVE SOLUTIONS; UNIQUENESS; DOMAIN PERTURBATION;
D O I
10.2307/2001785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider strictly positive solutions of competing species systems with diffusion under Dirichlet boundary conditions. We obtain a good understanding of when strictly positive solutions exist, obtain new nonuniqueness results and a number of other results, showing how complicated these equations can be. In particular, we consider how the shape of the underlying domain affects the behaviour of the equations.
引用
收藏
页码:829 / 859
页数:31
相关论文
共 29 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
Berestycky H., 1980, LECT NOTES MATH, V782, P16, DOI DOI 10.1007/BFB0090426
[3]   DECAY TO UNIFORM STATES IN ECOLOGICAL INTERACTIONS [J].
BROWN, PN .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (01) :22-37
[4]  
CANTRELL RS, 1987, HOUSTON J MATH, V13, P337
[5]  
CONWAY E, 1983, NONLINEAR PARTIAL DI, P215
[6]   STABLE COEXISTENCE STATES IN THE VOLTERRA-LOTKA COMPETITION MODEL WITH DIFFUSION [J].
COSNER, C ;
LAZER, AC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (06) :1112-1132
[7]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[8]   COUNTEREXAMPLES TO SOME CONJECTURES ON THE NUMBER OF SOLUTIONS OF NONLINEAR EQUATIONS [J].
DANCER, EN .
MATHEMATISCHE ANNALEN, 1985, 272 (03) :421-440
[9]  
DANCER EN, 1986, J REINE ANGEW MATH, V371, P46