TRANSIENT-BEHAVIOR IN THE ABSORPTION PROBABILITY-DISTRIBUTION IN THE PRESENCE OF A NON-MARKOVIAN DYNAMIC TRAP

被引:13
作者
BUDDE, CE
CACERES, MO
RE, MA
机构
[1] UNIV NACL CUYO,COMIS NACL ENERGIA ATOM,CTR ATOM BARILOCHE,RA-8400 BARILOCHE,RIO NEGRO,ARGENTINA
[2] UNIV NACL CUYO,COMIS NACL ENERGIA ATOM,INST BALSEIRO,RA-8400 BARILOCHE,RIO NEGRO,ARGENTINA
来源
EUROPHYSICS LETTERS | 1995年 / 32卷 / 03期
关键词
D O I
10.1209/0295-5075/32/3/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the Absorption Probability Distribution in the presence of a dynamic trap. The results are exact for every switching-time density of the trap. The deterministic and Markovian cases can also be obtained. Siegert's result is reobtained in the static limit. Monte Carlo simulations are compared with the inverse Laplace of our solution, finding excellent agreement at all times.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 18 条
[1]   RANDOM BIAS AS AN EXAMPLE OF GLOBAL DYNAMICAL DISORDER IN CONTINUOUS-TIME RANDOM-WALK THEORIES [J].
ALEMANY, PA ;
CACERES, MO ;
BUDDE, CE .
PHYSICAL REVIEW A, 1988, 38 (07) :3664-3671
[2]  
Bendler J T, 1985, WONDERFUL WORLD STOC
[3]   EXACT AND ASYMPTOTIC PROPERTIES OF MULTISTATE RANDOM-WALKS [J].
BRIOZZO, CB ;
BUDDE, CE ;
OSENDA, O ;
CACERES, MO .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) :167-182
[4]   DIFFUSION IN PRESENCE OF EXTERNAL ANOMALOUS NOISE [J].
BUDDE, CE ;
CACERES, MO .
PHYSICAL REVIEW LETTERS, 1988, 60 (26) :2712-2714
[5]   DEFECT DIFFUSION AND CLOSED-TIME DISTRIBUTIONS FOR IONIC CHANNELS IN CELL-MEMBRANES [J].
CONDAT, CA .
PHYSICAL REVIEW A, 1989, 39 (04) :2112-2125
[6]  
CONDAT CA, 1989, Z PHYS B, V77, P3130
[7]  
Goel N.S., 1974, STOCHASTIC MODELS BI
[8]   TRANSPORT ON A DYNAMICALLY DISORDERED LATTICE [J].
HARRISON, AK ;
ZWANZIG, R .
PHYSICAL REVIEW A, 1985, 32 (02) :1072-1075
[9]   1ST-PASSAGE-TIME STATISTICS IN DISORDERED MEDIA [J].
HERNANDEZGARCIA, E ;
CACERES, MO .
PHYSICAL REVIEW A, 1990, 42 (08) :4503-4518
[10]   A METHOD FOR THE NUMERICAL INVERSION OF LAPLACE TRANSFORMS [J].
HONIG, G ;
HIRDES, U .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (01) :113-132