CELL-CYCLE ANALYSIS OF E2F IN PRIMARY HUMAN T-CELLS REVEALS NOVEL E2F COMPLEXES AND BIOCHEMICALLY DISTINCT FORMS OF FREE E2F

被引:112
作者
CHITTENDEN, T
LIVINGSTON, DM
DECAPRIO, JA
机构
[1] HARVARD UNIV,SCH MED,DANA FARBER CANC INST,44 BINNEY ST,BOSTON,MA 02115
[2] HARVARD UNIV,SCH MED,BOSTON,MA 02115
关键词
D O I
10.1128/MCB.13.7.3975
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcription factor E2F activates the expression of multiple genes involved in cell proliferation, such as c-myc and the dihydrofolate reductase gene. Regulation of E2F involves its interactions with other cellular proteins, including the retinoblastoma protein (Rb), the Rb-related protein p107, cyclin A, and cdk2. We undertook a detailed analysis of E2F DNA-binding activities and their cell cycle behavior in primary human T cells. Three E2F DNA-binding activities were identified in resting (G0) T cells with mobilities in gel shift assays distinct from those of previously defined E2F complexes. One of these activities was found to be a novel, less abundant, Rb-E2F complex. The most prominent E2F activity in resting T cells (termed complex X) was abundant in both G0 and G1 but disappeared as cells entered S phase, suggesting a possible role in negatively regulating E2F function. Complex X could be dissociated by adenovirus EIA with a requirement for an intact ElA conserved region 2. However, X failed to react with a variety of antibodies against Rb or p107, implicating the involvement of an ElA-binding protein other than Rb or p107. In addition to these novel E2F complexes, three distinct forms of unbound (free) E2F were resolved in gel shift experiments. These species showed different cell cycle kinetics. UV cross-linking experiments suggested that a distinct E2F DNA-binding protein is uniquely associated with the S-phase p107 complex and is not associated with Rb. Together, these results suggest that E2F consists of multiple, biochemically distinct DNA-binding proteins which function at different points in the cell cycle.
引用
收藏
页码:3975 / 3983
页数:9
相关论文
共 49 条
[1]   ADENOVIRUS E1A PROTEINS CAN DISSOCIATE HETEROMERIC COMPLEXES INVOLVING THE E2F TRANSCRIPTION FACTOR - A NOVEL MECHANISM FOR E1A TRANSACTIVATION [J].
BAGCHI, S ;
RAYCHAUDHURI, P ;
NEVINS, JR .
CELL, 1990, 62 (04) :659-669
[2]   THE RETINOBLASTOMA PROTEIN COPURIFIES WITH E2F-I, AN E1A-REGULATED INHIBITOR OF THE TRANSCRIPTION FACTOR E2F [J].
BAGCHI, S ;
WEINMANN, R ;
RAYCHAUDHURI, P .
CELL, 1991, 65 (06) :1063-1072
[3]   ADENOVIRUS-E1A PREVENTS THE RETINOBLASTOMA GENE-PRODUCT FROM COMPLEXING WITH A CELLULAR TRANSCRIPTION FACTOR [J].
BANDARA, LR ;
LATHANGUE, NB .
NATURE, 1991, 351 (6326) :494-497
[4]   TRANSCRIPTION FACTOR E2F IS REQUIRED FOR EFFICIENT EXPRESSION OF THE HAMSTER DIHYDROFOLATE-REDUCTASE GENE INVITRO AND INVIVO [J].
BLAKE, MC ;
AZIZKHAN, JC .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :4994-5002
[5]   INDEPENDENT BINDING OF THE RETINOBLASTOMA PROTEIN AND P107 TO THE TRANSCRIPTION FACTOR E2F [J].
CAO, L ;
FAHA, B ;
DEMBSKI, M ;
TSAI, LH ;
HARLOW, E ;
DYSON, N .
NATURE, 1992, 355 (6356) :176-179
[6]   ADENOVIRUS-E1A, SIMIAN VIRUS-40 TUMOR-ANTIGEN, AND HUMAN PAPILLOMAVIRUS-E7 PROTEIN SHARE THE CAPACITY TO DISRUPT THE INTERACTION BETWEEN TRANSCRIPTION FACTOR-E2F AND THE RETINOBLASTOMA GENE-PRODUCT [J].
CHELLAPPAN, S ;
KRAUS, VB ;
KROGER, B ;
MUNGER, K ;
HOWLEY, PM ;
PHELPS, WC ;
NEVINS, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (10) :4549-4553
[7]   THE E2F TRANSCRIPTION FACTOR IS A CELLULAR TARGET FOR THE RB PROTEIN [J].
CHELLAPPAN, SP ;
HIEBERT, S ;
MUDRYJ, M ;
HOROWITZ, JM ;
NEVINS, JR .
CELL, 1991, 65 (06) :1053-1061
[8]   THE T/E1A-BINDING DOMAIN OF THE RETINOBLASTOMA PRODUCT CAN INTERACT SELECTIVELY WITH A SEQUENCE-SPECIFIC DNA-BINDING PROTEIN [J].
CHITTENDEN, T ;
LIVINGSTON, DM ;
KAELIN, WG .
CELL, 1991, 65 (06) :1073-1082
[9]   CELL-CYCLE REGULATION OF THE HUMAN CDC2 GENE [J].
DALTON, S .
EMBO JOURNAL, 1992, 11 (05) :1797-1804
[10]   A CYCLIN-A-PROTEIN KINASE COMPLEX POSSESSES SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY - P33CDK2 IS A COMPONENT OF THE E2F-CYCLIN-A COMPLEX [J].
DEVOTO, SH ;
MUDRYJ, M ;
PINES, J ;
HUNTER, T ;
NEVINS, JR .
CELL, 1992, 68 (01) :167-176