TRAVELING WAVE-FRONTS FOR THE DISCRETE FISHERS EQUATION

被引:132
作者
ZINNER, B
HARRIS, G
HUDSON, W
机构
[1] Algebra, Combinatorics, and Analysis, Auburn University, Auburn, AL 36849-5307
关键词
D O I
10.1006/jdeq.1993.1082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using continuation and comparison methods we obtain conditions for the existence and nonexistence of traveling wavefronts with speed c of the discrete Fisher′s equation u ·n = d(Un-1 - 2un + un+1) + f(hook)(un), n ∈ Z, where d is a positive number and f(hook) denotes a Lipschitz continuous function satisfying f(hook)(0) = f(hook)(1) = 0 and f(hook)(x) > 0 for 0 < x < 1. The results are sharp if f(hook) is differentiable at 0 and satisfies f(hook)′(0) x ≥ f(hook)(x) for x > 0. © 1993 by Academic Press, Inc.
引用
收藏
页码:46 / 62
页数:17
相关论文
共 14 条
[2]  
BELL J, 1984, Q APPL MATH, V42, P1
[3]  
Fife PC, 1979, MATH ASPECTS REACTIN
[4]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[5]  
HASTINGS A, 1978, J MATH BIOL, V6, P163, DOI 10.1007/BF02450786
[8]   DISPERSION AND POPULATION INTERACTIONS [J].
LEVIN, SA .
AMERICAN NATURALIST, 1974, 108 (960) :207-228
[9]  
LEVIN SA, 1978, STUDIES MATH BIOL, V2, P439
[10]  
MacArthur RH., 1967, THEORY ISLAND BIOGEO